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Abstract 

We  investigate  the geographical distribution of economic activity and wages  in a general 
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whereas accessibility better explains a region’s wage. The correlation between equilibrium 
wages  and  industry  shares  is  low,  thus  suggesting  that  the  two  variables  operate  largely 
independently. The model replicates well the spatial distribution of  industry using Spanish 
data, yet overpredict changes  in that distribution due to changes  in  'generalized transport 
costs'.  The  latter  had  only  small  impacts  on  changes  in  the  geographical  distribution  of 
economic activity in Spain from 1980 to 2007. 
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1 Introduction

Do market size and accessibility matter for industry location and wages? This question has
attracted substantial attention in the literature ever since Krugman’s (1980) and Helpman and
Krugman’s (1985) seminal contributions to new trade theory. The answer is ‘yes’, at least in
simple models. It has indeed been shown that, in a world with increasing returns and costly
trade, market size and ‘accessibility’ are locational advantages that significantly influence the
geographical distribution of industry and regional factor prices.1

Despite those fundamental insights of new trade theory and new economic geography, it
is fair to say that the models in which the results have been derived rely on a number of
highly restrictive assumptions. Those assumptions include, among others: (i) the existence of
a costlessly tradable good; (ii) a single production factor; (iii) constant elasticity of substitution
(ces) preferences; (iv) two industries only, with one producing a homogeneous good; and (v)
two locations only. Though necessary to derive clear-cut results, those assumptions imply that
little is know about the robustness of the results and on how they can guide empirical analysis.

Conscious of those limitations, and of the fact that a better understanding is required to
push further empirical work on that topic, much subsequent work has started to relax some
of those assumptions. First, Ottaviano and Thisse (2004), Picard and Zeng (2005), Zeng and
Kikuchi (2009), Baldwin, Martin, Forslid, Ottaviano, and Robert-Nicoud (2003), Head, Mayer,
and Ries (2002), and Yu (2005), among others, have shown that the basic insights of ‘home
market effects’ (hme) generalize to other preference structures – such as quadratic-linear pref-
erences – or other market structures – such as oligopolistic competition. Second, Davis (1998)
and Picard and Zeng (2005) have shown that the effect of market size on industry location
is strongly dampenend (or even disappears) when the homogeneous good is not costlessly
tradable. Davis (1998), in particular, shows that when trading the homogeneous good is as
costly as trading the differentiated good, market size has no longer any bearing on regional
specialization. This is also one basic message of Hanson and Xiang (2004), who argue that – in
the absence of a costlessly tradable good – not all increasing returns sectors can be dispropor-
tionately present in one region, i.e., display ‘home market effects’. Zeng and Kikuchi (2009),
and Takahashi, Takatsuka, and Zeng (2013) derive analytical results in the case without fac-
tor price equalization (fpe), but only with two regions.2 Behrens, Lamorgese, Ottaviano, and

1The so-called ‘home market effect’ (hme) quickly became a key building block of New Trade Theory (ntt)
first, and New Economic Geography (neg) later (Krugman, 1991; Ottaviano, Tabuchi, and Thisse, 2002). It also
attracted much attention in the empirical trade literature (e.g., Davis and Weinstein, 2003; Hanson and Xiang,
2004), because it potentially allowed to investigate the role of market size in shaping industry structure and trade.

2See also Takatsuka and Zeng (2012) for another model with trade costs and two countries. As in Picard
and Zeng (2005), all those models build on quadratic quasi-linear preferences following Ottaviano, Tabuchi, and
Thisse (2002). These authors show that trade costs in the homogeneous good do not ‘obscure’ the hme, but the
results are difficult to compare with those of the literature since there are no income effects in those models.
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Tabuchi (2009) use a ‘hybrid’ approach, where trading the homogenenous good is costless, but
where exogenous Ricardian differences in labor productivity in the homogeneous sector across
countries create exogenous wage differences. Though conceptually simple and applicable to
multiple countries, that approach does not allow for endogeneous wage changes in response to
changes in economic fundamentals. Last, turning to multi-country extensions of those models,
Behrens, Lamorgese, Ottaviano, and Tabuchi (2007, 2009) derive results for models with more
than two countries. They show that the topology of the trading network matters for several
of the results, and that the impact of market size on industry location arises only when dif-
ferences in factor costs and in accessibility to markets are adequately controlled for. While
being empirically very important, multi-location extensions of new trade models to arbitrary
geographical structures have been very rare in the literature until now.3

While all of the foregoing contributions shed some light on the role of market size and
accessibility on industry location and wages, what is missing to date is more systematic evi-
dence for what happens in more ‘realistic settings’ where several of the basic assumptions are
relaxed simultaneously. To the best of our knowledge, there has been no systematic investiga-
tion when there are multiple locations, several industries, and costly trade for all goods. This
paper addresses precisely these issues. As there is no hope to obtain clear-cut analytical results
in the general case, we instead resort to systematic numerical simulations. More precisely, we
simulate the equilibria of two different models using a large number of randomly generated
networks with a large number of regions. We then run simple regressions to extract the essence
of the ‘comparative static’ results that are out of reach of pencil-and-paper analysis. In a nut-
shell, our research strategy is to combine theory and numerical analysis to: (i) first prove some
theorems in ‘toy models’; (ii) then solve large-scale models by numerical analysis; (iii) then run
a detailed statistical analysis of the numerical results, very much like engineers or physicists
do; and (iv) finally confront the models with real data to use if for simulation purposes.

Our key findings can be summarized as follows. First, absolute local market size – as mea-
sured by population – and accessibility – as measured by centrality in the trading network
– are crucial in explaining a region’s wage. This result is due to the fact that absolute size
and accessibility affect all industries in similar ways, i.e., constitute a region’s absolute advan-

tage. The effect is stronger and more systematic in models where all sectors are subject to
transport costs and exhibit increasing returns to scale. Second the relative local market size
of industries (as measured by their consumer expenditure shares) is crucial in explaining a
region’s industrial composition. This result is due to the fact that relative spending patterns

3There are many other dimensions along which the basic models have been extended. Without being exhaus-
tive, we can mention Zeng and Kikuchi (2009), who provide an alternative model based on a footloose-capital
specification with two production factors: labor, for the variable cost, and capital for the fixed cost. Behrens
and Picard (2007, 2011) show that ‘home market effects’ get weaker or can even be reversed in the presence of
multi-plant firms, or when trade imbalances translate into higher freight rates.
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do not affect all industries in similar ways, i.e., constitute a region’s comparative advantage. In a
nutshell – and in line with Ricardian trade theory – absolute advantage translates into wages,
whereas comparative advantage maps into specialization patterns. Third, the correlation be-
tween equilibrium wages and equilibrium industry shares is rather low, thus suggesting that
both variables operate largely independently.

We then apply the models to Spanish data. Using ‘Generalized Transport Costs’ between
regions as a measure of trade frictions, we find that the models generally predict well the
distribution of industries, yet predict less well wages. A formal test does not allow to reject the
null hypothesis that the industry distribution predicted by the models is the same than that
observed in the data. We then use the calibrated model for Spain to run two counterfactual
exercises, the aim of which is to disentangle the impact of changes in accessibility and changes
in market size on regional industry shares and wages. Holding population fixed at 1980 levels,
we find that changes in transport costs between 1980 and 2007 do not explain much of the
increase in regional inequalities observed in Spain during that period. The change in inequality
is much better captured when we hold transport costs fixed at 1980 levels and consider changes
in population shares between 1980 and 2007. Although the simulated models capture the
qualitative trend towards more regional inequality in Spain, they also tend to significantly
overpredict the increase in polarization observed between 1980 and 2007.

The remainder of the paper is organized as follows. Section 2 develops two different new
trade ‘toy models’: one with a single differentiated industry and a homogeneous good in-
dustry; and one with two differentiated industries. In both models, trade is costly and factor
prices are endogenous. In Section 3, we extent the models to a larger scale and discuss a set
of numerical results obtained from simulating those two models for a large number of random
networks. We then present, in Section 4, an application to the case of Spanish regional data,
as well as results from two counterfactuals. Finally, Section 5 concludes. Technical details are
relegated to an extensive set of appendices.

2 Models

We develop two models within which we analyze the geographical distribution of economic
activity and wages. In both models, there are M ≥ 2 regions subscripted by i = 1, 2, . . . ,M .
Each region is endowed with Li immobile workers-consumers. The total population in the
economy is fixed at L ≡ ∑iLi. Labor is the only production factor, i.e., we abstract from
comparative advantage across regions.
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2.1 Model 1: One differentiated sector and one homogeneous sector

Our first model builds on Helpman and Krugman (1985) and its multi-location extensions
by Behrens et al. (2007, 2009). There is one increasing returns to scale (irs) sector with mo-
nopolistic competition that produces a continuum of varieties of a horizontally differentiated
good; and one constant returns to scale (crs) sector with perfect competition that produces a
homogeneous good. In the differentiated sector, the combination of irs, costless product dif-
ferentiation, and the absence of scope economies yields a one-to-one equilibrium relationship
between firms and varieties.

2.1.1 Preferences and demands

Preferences of a representative consumer in region j are given by:

Uj = H
1−µ
j D

µ
j , (1)

where Hj stands for the consumption of the homogeneous good; where Dj is an aggregate of
the varieties of the differentiated good; and where 0 < µ < 1 is the income share spent on the
differentiated good. We assume that Dj is given by a ces subutility function

Dj =

[

∑
i

∫

Ωi

dij(ω)
(σ−1)/σdω

] σ
σ−1

,

where dij(ω) is the individual consumption in region j of variety ω produced in region i; and
where Ωi is the set of varieties produced in i. The parameter σ > 1 measures the elasticity
of substitution between any two varieties. Let pHj denote the price of the homogeneous good
in region j and pij(ω) the price of variety ω produced in region i and consumed in region j.
Let wj denote the wage in region j. Maximizing (1) subject to the budget constraint pHj Hj +

∑i

∫
Ωi

pij(ω)dij(ω)dω = wj yields the following individual demands:

dij(ω) =
pij(ω)−σ

P
1−σ
j

µwj and Hj =
(1 − µ)wj

pHj
, (2)

where Pj is the ces price index in region j, given by

Pj =

[

∑
i

∫

Ωi

pij (ω)
1−σdω

] 1
1−σ

. (3)

2.1.2 Differentiated good

We first explain the workings of the irs industry. Technology is assumed to be identical across
firms and regions, therefore implying that firms differ only by the variety they produce and the
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region they are located in. Since varieties enter preferences in a symmetric way, we henceforth
suppress the variety index ω to alleviate notation. Production of any variety involves a fixed
labor requirement, F , and a constant marginal labor requirement, c. Denote by xij the amount
of a variety produced in i and shipped to j. The total labor requirement for producing output
xi ≡ ∑j xij is given by li = F + cxi.

Trade in the differentiated good is costly. Following standard practice we assume that trade
cost are of the iceberg form: τij ≥ 1 units must be dispatched from region i in order for one unit
to arrive in region j. We further assume that trade costs are symmetric, i.e., τij = τji.4 Using
the demands (2), each firm in i maximizes its profit

πi = ∑
j

(pij − cwiτij)Lj

p−σ
ij

P
1−σ
j

µwj − Fwi (4)

with respect to all its prices pij , taking the price indices Pj and the wages wj as given. Because
of ces preferences, profit-maximizing prices have constant markups

pij =
σ

σ − 1
cwiτij . (5)

We denote by ni the endogenously determined mass of firms located in i, and by N ≡ ∑i ni the
total mass of firms in the economy. We also denote by λi ≡ ni/N the share of firms in region i.

Because of iceberg trade costs, a firm in region i has to produce xij ≡ Ljdijτij units to
satisfy aggregate demand in region j. Free entry and exit imply that profits are non-positive in
equilibrium which, using (4) and the pricing rule (5), yields the standard condition

xi ≡ ∑
j

Ljdijτij ≤
F (σ− 1)

c
. (6)

Let φij ≡ τ1−σ
ij ∈ [0, 1] denote the ‘freeness of trade’ in the differentiated good between regions

i and j. Inserting the demand (2) and the price index (3) into (6), multiplying both sides by pij ,
and using the prices (5), we get the wage equations

∑
j

w−σ
i wjφijLj

∑k w
1−σ
k φkjnk

≤
σF

µ
. (7)

Dividing both sides by the total population, L, letting θj ≡ Lj/L, and choosing – without loss
of generality – units for F such that F ≡ µL/σ, we can rewrite (7) as follows:

RMPi ≡ ∑
j

w−σ
i wjφijθj

∑k w
1−σ
k φkjnk

≤ 1, (8)

4This assumption is not crucial but makes our life easier in terms of modeling. We relax it later in Section 4

when appying our model to Spanish regions.
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where RMPi stands for the real market potential of region i (Head and Mayer, 2004). The number
of workers employed in the differentiated industry of region i, when it has ni firms, is

LD
i ≡ nili = ni (F + cxi) = niµL, (9)

where we have made use of our normalization of F .

2.1.3 Homogeneous good

We next explain the workings of the perfectly competitive crs industry. We assume that tech-
nology is the same in all regions. Without loss of generality, we normalize the unit labor
requirement to one. Perfect competition implies marginal cost pricing. Given LD

i workers
employed in the differentiated good industry, the number of workers employed in the homo-
geneous sector equals LH

i ≡ Li − LD
i . Inserting (9) into that expression, we can rewrite the

number of workers in the homogeneous sector as follows:

LH
i = Li − niµL. (10)

Note that (10) need not be positive, i.e., some regions may specialize in the production of the
differentiated good only.

We assume that trading the homogeneous good is costly.5 Hence, factor price equalization
(fpe) does not hold in general and the world mass of firms in the differentiated industry is no
longer constant.6 The price of the homogeneous good produced in i and delivered to j equals
its marginal cost of production, the wage wi, times the trade cost τHij between regions i and j:
pHij = wiτ

H
ij ≡ wiξτij , where ξ > 0 is a parameter that captures the relative cost of trading the

homogeneous good compared to the differentiated good. If ξ = 1, there are no cost differences. When
ξ > 1, trading the homogeneous good is more costly than trading the differentiated good, and
vice versa when ξ < 1. In what follows, we set ξ < 1 because in the opposite case there is no
trade in the homogeneous good so that the only equilibrium is one where industry shares are
proportional to the size of the local market (Davis, 1998).7

Because good H is homogeneous and can be produced in, and imported from, any region,
its price in region i must be the lowest one that can be secured from any source:

pHi = min
k

{wkξτki} . (11)

5See Appendix A for a discussion of the case with costless trade of the homogeneous good. In that Appendix,
we also explain why we disregard this case in what follows.

6The total mass of firms, N , varies with the spatial structure of the economy when there is costly trade in the
homogeneous good (see, e.g., Takatsuka and Zeng, 2012). Hence, (8) cannot be generally expressed in the usual
share notation λi with respect to firms, which explains the presence of nk in that expression.

7There is of course still two-way trade in the differentiated good and the wages adjust to balance that trade.
However, our focus is on industry structure and wages. The former cannot be meaningfully analyzed when we
assume that ξ ≥ 1, whereas the latter cannot be meaningfully analyzed if we assume that there is free trade in the
homogeneous good.
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Demand for the homogeneous good is given by (2), while supply is determined by the domestic
production for the local market, Xii, and the sum of imports. Let Xji denote the imports of
the homogeneous good from region j. Market clearing for the homogeneous good in region i

requires that:
(1 − µ)wiLi

pHi
= Xii + ∑

j 6=i

Xji. (12)

Dividing the foregoing expression by the total population, L, and using the price (11), we can
write (12) in terms of population shares, production, and imports:

(1 − µ)wiθi

mink {wkξτki}
= X̃ii + ∑

j 6=i

X̃ji, (13)

where X̃ii ≡ Xii/L, and X̃ji ≡ Xji/L denote per capita variables. Labor market clearing in
region i then requires that LH

i = Li − niµL = ξ
(
τiiXii + ∑j 6=i τijXij

)
. Since Li = θiL, we can

rewrite the foregoing condition in per capita terms as follows:

θi − niµ = ξ

(
τiiX̃ii + ∑

j 6=i

τijX̃ij

)
. (14)

Because of perfect competition, the homogeneous good will not be simultaneously imported
and exported by the same region. Hence, it must be that

X̃ij =

{
> 0 if wiτij ≤ mink{wkτkj}

= 0 otherwise.

This latter condition can be rewritten equivalently in complementaty slackness terms as

X̃ij ·

[
wiτij − min

k
{wkτkj}

]
= 0 and X̃ij ≥ 0, ∀j = 1, 2, . . . ,M . (15)

2.1.4 Equilibirum

An equilibrium in the irs sector is such that the real market potential (8) is equal to one in all
regions with a positive measure of firms, and less than one for regions devoid of firms. If all
regions have a positive measure of firms, we obtain an interior equilibrium, whereas if there are
some regions without firms we get a corner equilibrium. Formally, an equilibrium is defined as:

RMPi = 1 if n∗i > 0

RMPi ≤ 1 if n∗i = 0.
(16)

Using notation in terms of complementary slackness, this implies that n∗i · (RMPi − 1) = 0
and n∗i ≥ 0 for all regions. In addition to the zero profit free entry condition (16), the market
clearing conditions (14) for the homogeneous good must hold for all regions at the equilibrium
wages wi. Conditions (13), (14), (15), and (16) define a system of 3M +M(M − 1) equations in
as many unknowns – the firm masses ni, the wages wi, the per capita domestic supplies X̃ii,
and the per capita imports X̃ij .
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2.2 Model 2: Two differentiated sectors

Our second model builds on Krugman (1980) and Behrens and Ottaviano (2011). There are two
irs sectors with ces monopolistic competition.8 Regional market sizes differ both because of
the numbers of consumers and because consumers have different spending patterns for the two
goods. In such a setting, we can look at how differences in absolute market sizes – the population
shares θi – and differences in relative market sizes – the expenditure shares µi – affect wages and
the location patterns of industries.

2.2.1 Preferences and demands

The basic setup is the same as in Section 2.1, except that there are now two ces sectors and no
homogeneous sector. Preferences of a representative consumer in region j are given by:

Uj = D
µ1j
1j D

µ2j
2j , (17)

where Dsj stands for the ces consumption aggregate in sector s in region j; and 0 < µsj < 1
is the region-specific income shares for sector s. With two sectors, µsj is equal to µj in sector 1
and to 1− µj in sector 2. Since expenditure shares are region specific, the relative consumption
patterns differ across regions. Hence, market sizes differ due to spending patters on top of
differences in regional population sizes.

The aggregator for consumption of the differentiated good, Dsj , is as follows:

Dsj =

[

∑
i

∫

Ωsi

dsij(ω)
(σ−1)/σdω

] σ
σ−1

,

where dsij(ω) is the individual consumption in region j of sector-s variety ω produced in
region i; and where Ωsi is the set of sector-s varieties produced in i. For simplicity, we as-
sume that the elasticity of substitution between any two varieties, σ, is the same in both
sectors.9 Let psij (ω) denote the price of sector-s variety ω produced in i and consumed
in j; and let wj denote the wage in region j. Maximizing (17) subject to the budget con-
straint ∑i

[∫
Ω1i

p1ij(ω)d1ij(ω)dω +
∫
Ω2i

p2ij(ω)d2ij(ω)dω
]
= wj yields the following individual

demands:

dsij(ω) =
psij(ω)−σ

P
1−σ
sj

µsjwj , where Psj =

[

∑
i

∫

Ωsi

psij (ω)
1−σdω

] 1
1−σ

(18)

8Hanson and Xiang (2004) develop a model with a continuum of sectors, but their focus is on two regions only.
In this section, we take a complementary approach: we focus on two sectors only, but consider a large number of
regions to look at industry location and wages.

9We could relax that assumption, but there is not much to be learned from that exercise. The same holds true
for relaxing the assumption of identical technologies in the two sectors. Nevertheless, as explained in footnote 17

below, we have also studied the effects of alternative values of σ and expenditure patterns µsj on industry shares,
λsi, and wages, wi.
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is the ces price index in sector s and region j.

2.2.2 Technology and trade

For simplicity, we assume that technology is the same in both sectors. As in Section 2.1, the
total labor requirement for producing the output xsi ≡ ∑j xsij is given by lsi = F + cxsi. Trade
in both differentiated goods is costly and trade cost are symmetric and of the iceberg form:
τsij = τsji ≥ 1 units must be dispatched from region i in order for one unit of a sector-s variety
to arrive in region j. Using (18), a sector-s firm in i maximizes profit

πsi = ∑
j

(psij − cwiτsij)Lj

p−σ
sij

P
1−σ
sj

µsjwj − Fwi (19)

with respect to all its prices psij , taking the price indices Psj and the wages wj as given. As
before, profit-maximizing prices have constant markups:

psij =
σ

σ − 1
cwiτsij . (20)

We denote by nsi the endogenously determined mass of sector-s firms located in i, and by
Ns ≡ ∑i nsi the total mass of sector-s firms in the economy. Last, λsi ≡ nsi/Ns denotes the
share of sector-s firms in region i.

A firm in region i and sector s has to produce xsij ≡ Ljdsijτsij units to satisfy aggregate
demand in region j. Free entry and exit imply that profits are non-positive in equilibrium
which, using the prices (20), yields again the standard free entry zero profit condition (6).
Inserting the demands and the price index (18) into that expression, using the prices (20), and
letting φsij ≡ τ1−σ

sij ∈ [0, 1] denote the ‘freeness of trade’ in sector s, we get the wage equations:

∑
j

w−σ
i wjφsijLjµsj

∑k w
1−σ
k φskjnsk

≤ σF . (21)

Dividing both sides by world population, L, letting θj ≡ Lj/L as before, and choosing without
loss of generality units of F such that F = L/σ, we obtain the real market potential for sector-s
firms in region i as follows:

RMPsi ≡ ∑
j

w−σ
i wjφsijθjµsj

∑k w
1−σ
k φskjnsk

≤ 1. (22)

2.2.3 Equilibrium

Expressions (22) define 2M conditions in the 3M unknowns {n1i,n2i,wi}, for i = 1, 2, . . . ,M .
To pin down the wages, we can impose either the labor market clearing conditions or the trade
balance conditions. In what follows, we use the former as they are easier to handle given our
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choices of normalization. Labor market clearing in i requires that Li = n1i(F + cx1i) + n2i(F +

cx2i) = L(n1i + n2i), where we have used the normalization of F . Hence,

θi = n1i + n2i. (23)

Conditions (22) and (23) can be solved for the equilibrium wages and industry shares. The
total masses of firms in the two sectors in the economy, N1 = ∑i n1i and N2 = ∑i n2i are not
constant and vary with the spatial distribution of demand and with the structure of the trading
network. Note, of course, that the total mass of firms in both sectors in the world economy is
equal to one: ∑i(n1i + n2i) = ∑i θi = 1 from (23).

To solve the model, we set w1 ≡ 1 by choice of numeraire. Focusing on two regions with
symmetric trade costs and free intra-regional trade (φsii = 1 and φsij = φ for all i 6= j), Behrens
and Ottaviano (2011) have proven the following analytical results for two special cases: absolute

advantage, i.e., when the spending patterns of the two regions are the same but when the regions
differ by population size (µ11 = µ12 and µ21 = µ22, but θ1 > θ2); and comparative advantage, i.e.,
when spending patterns are anti-symmetric but when the regions have the same population
size (µ11 = µ22 and µ21 = µ12, but θ1 = θ2). In those two polar cases, it can be shown that (see
Behrens and Ottaviano, 2011, for the proofs):

Proposition 1 (Pure ‘Comparative Advantage’) Assume that preferences are anti-symmetric across

regions (µ11 = µ22 and µ21 = µ12), and that both regions are of the same size (θ1 = θ2). The equilibrium

is such that

n∗11 = n∗22 =
µ(1 + φ)− φ

2(1 − φ)
and n∗21 = n∗12 =

1 − µ(1 + φ)

2(1 − φ)

The equilibrium relative wage satisfies w∗
2 = 1.

Proposition 2 (Pure ‘Absolute Advantage’) Assume that preferences are symmetric across regions

(µ11 = µ12 and µ21 = µ22), and that region 1 has the larger market (θ1 > θ2). The equilibrium is such

that

n∗1i = µθi and n∗2i = (1 − µ)θi (24)

for i = 1, 2. The equilibrium relative wage satisfies 0 < w∗
2 < 1.

In Proposition 1, each region is the larger market for one of the two goods. Hence, each re-
gion specializes in the production of the good for which it has a relatively larger local demand.
In other words, relative differences in market sizes lead to different specialization patters but
do not affect factor prices. In the case of Proposition 2, one region is the larger market for both
goods. In that case, the wage in the larger region must be higher because it offers a locational
advantage for both industries. Clearly, this is akin to absolute advantage in a Ricardian sense
and it is, therefore, capitalized into factor prices.
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Of course, the two cases in Propositions 1 and 2 are extreme ones, and intermediate cases
where both absolute and comparative advantage play a role should be considered. Further-
more, it is of interest to relax the assumption of just two regions and of symmetric trade costs
to investigate also the interactions with ‘geography’. This is what we do using numerical
simulations in the next section and Spanish data in Section 4.

3 Size and accessibility in random tree networks

It is virtually impossible to derive general analytical results in an arbitrary multi-region set-
ting without fpe, because the equilibrium allocations of firms and wages are determined by a
complex trade-off between a region’s market size and its accessibility in the trading network.10

To nevertheless gain insights into how size and accessibility – as well as the whole structure of
the trading network – influence the equilibrium, we resort to systematic numerical simulation.
To this end, we proceed as follows.

First, we generate a random tree network with a random number of nodes (see Appendix B
for details). The nodes are the regions, and the links between nodes represent the connections
for shipping goods. Networks are generated incrementally either by having equal attachment
probabilities for new nodes, or by using the Barabási and Albert (1999; henceforth ba) preferen-
tial attachment algorithm that generates networks which exhibit a ‘hub-and-spoke’ structure.
Second, we assign a random population share, θi, to each node i of the network.11 In the case
with two differentiated industries, we also randomly assign a region-specific expenditure share
for each industry. Third, we solve the two models for their equilibria. We repeat this three-step
process for a large number of randomly generated networks and then relate selected charac-
teristics of the equilibria thus obtained to underlying networks characteristics. Doing so will
allow us to gain more systematic insights into how size and accessibility interact to determine
the regional allocation of firms and wages, and how those allocations depend on the econonic
model we have choosen.

We describe the numerical implementation in detail in Appendix C. In the following sec-

10One can derive analytical results by having multiple regions and a symmetric trading network, but this is in
the end isomorphic to using just two regions and thus of no particular interest.

11Choosing ‘totally random’ networks – though providing an interesting benchmark case – is not fully satisfying
because transportation networks are endogenous and obey certain rules. This is why we also derive results using
networks that display a ‘hub-and-spoke’ structure to capture the empirical fact that some places are very well
connected while others are very poorly connected (see, e.g., Xie and Levinsohn, 2008, for the case of the road
network in Indiana). Observe that we assign θi randomly, i.e., there is no systematic correlation between size
and accessibility. The reason for that choice is that we want to study the distribution of industry as a function
of size and accessibility separately. Introducing a systematic correlation between the two (though empirically
relevant since larger places are better connected and since places that are better connected tend to grow larger;
see Duranton and Turner, 2012) is not required for our analysis.
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tions, we explore the results obtained for the two models.

3.1 Model 1: One differentiated sector and one homogeneous sector

We first compute simple correlations between the equilibrium masses of firms in the different
regions (n∗i ), their population shares (θi), and their centrality (Ci). The latter is measured either
by the closeness centrality (henceforth ‘closeness’, for short) or by the node’s degree. Following
standard practice in the network literature (see, e.g., Freeman, 1979), closeness is defined as

Ci =

[
∑j dij

mink{∑j dkj}

]−1

, (25)

where dij denotes the length of the link – the distance – between nodes i and j. By definition,
closeness varies between 0 and 1. ‘Degree’ is simply measured by the number of links of
the node. Centrally located nodes have both a high value for closeness and for degree. This
can be seen from the correlations in the top panel of Table 1. That panel shows that, as
expected, size (θi) and accessibility (closenessi and degreei) are positively linked to a region’s
equilibrium industry share (λ∗i or, alternatively, n∗i ) and to a region’s wage (w∗

i ). The correlation
is particularly strong for the degree measure of centrality. Observe also that size is more
strongly linked to industry location, whereas accessibility is more strongly linked to wages. Put
differently, size differences map into differences in industry structures, whereas accessibility
differences translate into factor price difference. In general, however, the correlations with
factor prices are weaker than the correlations with industry location.

Table 1: Simple correlations (Model 1).

λ∗
i n∗

i w∗
i θi closenessi degreei

λ∗
i 1

n∗
i 0.9987 1

w∗
i 0.0849 0.0806 1

θi 0.8119 0.8065 0.0899 1

closenessi 0.2680 0.2693 0.1316 0.0134 1

degreei 0.3972 0.4023 0.1799 0.0135 0.7075 1

CV(Λ∗) CV(n∗ ) CV(w∗) CV(θ) CV(closeness) CV(degree)
CV(Λ∗) 1

CV(n∗) 1 1

CV(w∗) -0.0082 -0.0082

CV(θ) 0.3005 0.3005 0.1581 1

CV(closeness) 0.0113 0.0113 0.2475 0.2156 1

CV(degree) 0.3255 0.3255 -0.0728 -0.2254 -0.2215 1

Notes: Simple correlations for 100 random tree networks with a random number of 20 to
30 nodes. The top panel of the table gives correlations at the level of individual nodes
(pooled across all 100 networks), whereas the bottom panel of the table gives correlations
at the level of the whole network. The shares λ∗

i are given by λ∗
i = n∗

i /(∑j n
∗
j ). CV

denotes the coefficient of variation, whereas Λ∗, n∗, w∗ , and θ denote the equilibrium
vectors of industry shares, masses of firms, wages, and market size, respectively.
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The bottom panel of Table 1 displays the same correlations as in the top panel, but now
between aggregate network statistics and the vectors of equilibrium outcomes. More precisely,
it displays the correlations between the coefficients of variation (cv) of industry shares and
wages (computed for each network at the node level), and the coefficients of variation of size
and accessibility. As can be seen, dispersion in market sizes – as captured by a larger cv –
is positively associated with dispersion of industry shares and wages. The same holds true
for dispersion in the accessibility measures, with again a much stronger effect of degree as
compared to closeness. It is finally of interest to note that the correlations between the equilib-
rium industry shares, λ∗i (or the equilibrium masses of firms, n∗i ) and the equilibrium wages –
though positive – are fairly small (0.080 and 0.085, respectively). This result suggest that the
two variables operate largely independently to determine the equilibrium.

To go beyond simple univariate correlations, we now run several ordinary least squares
(ols) regressions to estimate the partial effect of increasing market size or centrality of nodes
on the equilibrium shares of manufacturing activity and the equilibrium wages, controlling
for accessibility and for size. In Model 1, there are two endogeneous variables that can be
analyzed in the regressions: the equilibrium allocation of firms, λ∗i , and the equilibrium wages,
w∗
i .12 Mirroring the two panels of Table 1, we start with an analysis at the level of the individual

nodes, and turn then to an analysis at the level of the whole network.

3.1.1 Results for individual nodes

We regress the equilibrium shares of firms, λ∗i , or the equilibrium wages, w∗
i , on measures of:

(i) the node’s centrality, as given by either closeness or degree; and (ii) the node’s market size.13

We perform a pooled analysis with both types of networks (based on preferential attachment,
ba, or equal probabilities) – in which case we include a network dummy indicating the network
type – and separate regressions for each type of network. Formally, we estimate

λ∗i = β0 + β1centralityi + β2θi + network_dummyi + ǫi (26)

w∗
i = γ0 + γ1centralityi + γ2θi + network_dummyi + ǫi, (27)

for all the nodes of the networks we have generated.
Table 2 summarizes our estimation results of (26) and (27). As can be seen from that table,

both centrality and market size positively influence a node’s equilibrium share of firms and
its equilibrium wage. It is worth pointing out that the so-called ‘Home Market Effect’ (hme)
– defined as a more than proportional increase in industry shares in response to an increase in
local market size – always arises in both types of networks: (∂λ∗i /∂θi > 1). This effect seems
to generally hold in models without fpe (see, e.g., Takahashi, Takatsuka, and Zeng, 2013, for a
discussion of the two-region case).

12Due to the high correlation between λ∗i and n∗i (see Table 1), there is no reason to look at the latter separately.
13We do not include both measures of centrality simultaneously, because of their high correlation (see Table 1).
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Table 2: ols regression results for individual nodes (Model 1).

Dependent variable: λ∗
i

(i) (ii) (iii) (iv) (v) (vi)
Closenessi 0.0671a 0.1019a 0.0347a

(24.637) (23.110) (11.821)
Degreei 0.0090a 0.0097a 0.0074a

(44.085) (34.725) (24.247)
θi 1.2201a 1.2175a 1.2095a 1.2094a 1.2340a 1.2277a

(77.116) (92.053) (47.772) (55.957) (71.466) (81.959)
Constant -0.0528a -0.0260a -0.0725a -0.0270a -0.0321a -0.0233a

(-26.905) (-32.700) (-24.090) (-23.765) (-15.490) (-25.825)
Network type Both Both ba ba Equal Equal
Network dummy Yes Yes No No No No
Observations 2,498 2,498 1,274 1,274 1,224 1,224

Adjusted R2 0.726 0.808 0.689 0.773 0.812 0.859

Dependent variable: w∗
i

(i) (ii) (iii) (iv) (v) (vi)
Closenessi 0.0420a 0.0361a 0.0465a

(6.130) (4.366) (4.350)
Degreei 0.0056a 0.0049a 0.0071a

(9.164) (8.165) (5.553)
θi 0.1788a 0.1772a -0.1424a -0.1428a 0.4906a 0.4863a

(4.487) (4.488) (-2.999) (-3.062) (7.804) (7.772)
Constant 0.9646a 0.9815a 0.9717a 0.9850a 0.9492a 0.9663a

(195.120) (412.934) (172.098) (401.503) (125.631) (256.572)
Network type Both Both ba ba Equal Equal
Network dummy Yes Yes No No No No
Observations 2,498 2,498 1,274 1,274 1,224 1,224

Adjusted R2 0.0333 0.0507 0.0200 0.0549 0.0610 0.0699

Notes: We set σ = 5, µ = 0.4, and ξ = 0.7. See Appendix D for a discussion of those
choices. Simple ols regressions. ba denotes networks generated using the Barabási and
Albert (1999) algorithm. T -stats in parentheses. a, b, and c denote coefficients significant
at 1%, 5%, and 10%, respectively.

Note further that both measures of centrality – closeness and degree – have a statistically
strongly significant impact on the equilibrium allocation of firms across regions.14 We also ran
the regressions by quintiles in terms of the degree or the closeness distributions of the nodes.
In both cases, the estimated coefficients for θi increase monotonically with the quintiles. Thus,
there is some complementarity between market size and accessibility: more accessible regions
benefit more strongly from an increase in market size than more peripheral regions. In other
words, increasing the size of the market in peripheral regions is unlikely to have strong impacts
on the equilibrium allocation of industry.

The results pertaining to wages in the bottom panel of Table 2 deserve some comments.

14The results are identical when using the mass of firms, n∗i , instead of the share of firms, λ∗i . This finding
suggests that the total mass of firms has no specific additional effect on the equilibrium allocation across regions.
Since our regressions are not in logarithmic form, scaling by the total number of firms is not neutral. One might
have expected that the total number of firms has a significant dispersive impact. Indeed, as the total number of
firms rises, ‘competition’ gets tougher, and thus firms tend to disperse more.
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First, as can be seen, the two measures of centrality are always positively linked to a region’s
equilibrium wage. In other words, more centrally located regions or regions with better market
access command higher wages, which is in line with predictions of new economic geography
models and with empirical evidence (see, e.g., Mion, 2004, for Italy; and Hanson, 2005, for
the us). The average equilibrium wage for ‘peripheral’ regions – in the first quintile of the
degree distribution – is wQ1 = 0.9854; whereas that for more ‘central’ regions – in the fifth
quintile of the degree distribution – is wQ5 = 1.0074. Consequently, peripheral regions tend
to specialize in the homogeneous good, paying lower wages and exporting to more central
locations characterized by a high degree. The latter enjoy lower transportation costs over the
network, and hence specialize in the differentiated good paying higher wages.

Second, observe that the correlation between θi and w∗
i is quite low – though still positive.

The intuition underlying this surprising result is as follows. Consider two regions i and j,
where θi > θj . Assume that region i is not fully specialized in the production of the differentiated
good, i.e., there is still some local production of the homogeneous good. If region i imports
some of the homogeneous good from region j, by (11) the following condition must hold:
pHji = wjξτji = pHii = wiξτii. Hence, the relative wage wi/wj in the two regions just depends on
the relative trade costs τji/τii, but it is independent of market sizes θi and θj . In other words, it
is just the structure of the trading network that matters, but not the distribution of market sizes.
Of course, this result only holds true when a region is not fully specialized in the production of
differentiated goods. Should no production of the homogeneous good take place in a region,
its wage will increase with its market size – and so will the wages of the regions that export
the homogeneous good to that region. We can easily confirm this conjecture by computing the
correlation between θi and w∗

i for the regions that do not produce any of the homogeneous
good. In that case the correlation is about 0.4, instead of 0.09 when considering all regions. In
other words, costly trade in the homogeneous good imposes strong conditions on wages, and
those conditions partly destroy the positive link between market size and wages.

Table 3: Link between market size and equilibrium wages by node type (Model 1).

Node type # nodes θi w∗
i

Barabási and Albert
Nodes specialized in the homogeneous good 225 0.0124 0.9974

Nodes specialized in the differentiated good 122 0.0310 1.0000

Nodes not specialized in either good 927 0.0470 0.9852

Equal probability
Nodes specialized in the homogeneous good 205 0.0090 0.9982

Nodes specialized in the differentiated good 41 0.0240 1.0011

Nodes not specialized in either good 978 0.0460 0.9990

Notes: Breakdown of individual nodes by specialization type. The sample
is the same than that used for the regression analysis. θi and w∗

i denote
the average market size and the average equilibrium wages of the types of
nodes.
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Third, centrality – both in terms of closeness and in terms of degree – generally has a strong
impact on industry location and, to a lesser extent, on wages as explained above. A larger local
market is weakly associated with higher wages, except in hub-and-spoke type ba networks
(see columns (iii) and (iv) of Table 2). This latter result is surprising and requires some further
explanation. As can be seen from Table 3, the largest regions are not fully specialized in the
production of either type of good: their large size prevents them from being fully specialized
since they cannot source all the homogeneous good that they need. Consequently, these regions
have lower wages than smaller regions specialized in the differentiated good. The reason is
that, as stated before, their wage is linked to the wage of the regions that supply them with the
homogeneous good since they are unspecialized. In ba type networks, the largest regions have
relatively low wages compared to the equal random network case, as there are on average less
links with other regions in those networks. This strong non-linear effect between equilibrium
wages and market size drives the negative coefficients in the lower panel of Table 2 for ba

networks. Note also that the constant term in the wage regressions is close to unity, which is
the theoretical value of relative wages in the absence of any differences in size and accessibility.

Our findings suggest that any analysis focusing on two regions only or disregarding the
spatial structure of the trading network is likely to miss an important part of the story. It
also shows that more careful theoretical analysis of multi-region trading systems is necessary,
though it is well known that such an analysis is difficult to carry out in the general case when
factor prices are not equalized.15

3.1.2 Results for the whole network

We next run regressions at the level of the network. The underlying idea is to link a measure of
inequality in either the equilibrium allocation of industry or wages to measures of inequality
in the distribution of market sizes and centrality in the network. We use as our inequality
measure the cv of the different variables. As in the case of individual nodes, we first compute
the correlations – this time across networks – for our measures of inequality. The results are
reported in the bottom half of Table 4.

We then run ols regressions to estimate the effect of the dispersion in the population shares
and in centrality on the inequality in the distribution of manufacturing shares and wages.
Formally, we estimate:

CV(λ∗l ) = β0 + β1CV_centralityl + β2CV(θl) + network_dummyl + ǫl (28)

CV(w∗
l ) = γ0 + γ1CV_centralityl + γ2CV(θl) + network_dummyl + ǫl, (29)

where the subscript l now denotes the network and not the individual nodes.
15Behrens et al. (2009) take an intermediate route where factor prices differ because of exogenous Ricardian

differences. Though conceptually simpler than the case with endogeneous factor prices, this approach does not
allow to analyze how wages change with market size and accessibility.
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Table 4: ols regression results for the whole network (Model 1).

Dependent variable: CV(Λl)
(i) (ii) (iii) (iv) (v) (vi)

CV(Closenessl) 0.1530 -0.2892 0.5292

(0.110) (-0.133) (0.299)
CV(Degreel) 0.2614b 0.1597 0.6380b

(2.106) (1.027) (2.639)
CV(θl) 0.6269a 0.7112a 0.7167a 0.7325a 0.5185b 0.8577a

(3.688) (4.250) (2.871) (3.041) (2.225) (3.454)
Constant 0.4326 0.2515c 0.5920 0.3678c 0.4145 -0.0727

(1.430) (1.780) (1.295) (1.720) (1.056) (-0.279)
Network type Both Both ba ba Equal Equal
Network dummy Yes Yes No No No No
Observations 100 100 51 51 49 49

Adjusted R2 0.198 0.233 0.116 0.135 0.0655 0.187

Dependent variable: CV(wl)

(i) (ii) (iii) (iv) (v) (vi)
CV(Closenessl) 0.4631b 0.6153c 0.3053

(2.082) (1.708) (1.157)
CV(Degreel) 0.0154 0.0264 -0.0413

(0.745) (0.997) (-1.066)
CV(θl) 0.0284 0.0443 0.0481 0.0688c 0.0005 -0.0146

(1.043) (1.588) (1.165) (1.677) (0.016) (-0.367)
Constant -0.0835c -0.0011 -0.1305c -0.0352 -0.0323 0.0697

(-1.725) (-0.046) (-1.726) (-0.967) (-0.552) (1.670)
Network type Both Both ba ba Equal Equal
Network dummy Yes Yes No No No No
Observations 100 100 51 51 49 49

Adjusted R2 0.0476 0.0103 0.0661 0.0295 -0.0132 -0.0175

Notes: CV stands for ‘coefficient of variation’. We set σ = 5, µ = 0.4, and ξ = 0.7.
See Appendix D for a discussion of those choices of parameter values. Simple ols

regressions. ba denotes networks generated using the Barabási and Albert (1999)
algorithm. T -stats in parentheses. a, b, and c denote coefficients significant at 1%, 5%,
and 10%, respectively.

As can be seen from Table 4, the dispersion in market sizes, θi, has a significant impact on
the dispersion in the equilibrium allocation of firms, whereas the geographical structure of the
trading network seems to be of lesser importance. Inequality in market size is more important
for explaining inequality in the allocation of firms than the network structure. Quite surpris-
ingly, wage inequality is not strongly linked to either inequality in the distribution of market
sizes or to inequality in accessibility in the trading network. Closeness has a positive impact
on wage inequality, but only in networks that have a sufficiently strong topological structure
(i.e., in ba-type networks). Observe that in totally random tree networks, neither dispersion in
market sizes nor in accessibility correlate significantly with dispersion in wages. One might
suspect that some non-linear relationship is at work, especially since many regions can become
deindustrialized, i.e., have a zero industry share (see Table 3). When a large number of regions
have zero industry shares, the cv may decrease since there is no more variation coming from
the deindustrialized regions. We checked formally the impact of deindustrialized regions on
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equilibrium inequality. Controlling for the number of regions without industry (about 430 out
of 2498, or 17.25%), we find that this variable is significant in all regressions, but that it does
not change in any way the qualitative results. Thus, deindustrialized regions do not drive our
key findings. They are also not driven by units of measurement issues, since we use the cv

which is unit free. Last, observe that the model fit is generally much better for the dispersion
of industry (top half of the table) than for the dispersion in wages (bottom half of the table).
It seems thus much harder to link wage inequality to inequality in the model’s fundamentals
than spatial inequality in industry shares.

3.2 Model 2: Two differentiated sectors

We now look at the multi-region case with two differentiated ces industries. To the best of
our knowledge, this has not been done until now. With two differentiated sectors, we have
to examine the spatial distribution of firms in both sectors, λ∗1i ≡ n∗1i/(∑j n

∗
1j) and λ∗2i ≡

n∗2i/(∑j n
∗
2j), as well as the equilibrium wages w∗

i . Simple correlations among the equilibrium
values are presented in Table 5.

Table 5: Simple correlations (Model 2).

λ∗
1i λ∗

2i w∗
i θi closenessi degreei µ1i µ2i

λ∗
1i 1

λ∗
2i -0.2194 1

w∗
i 0.3202 0.3397 1

θi 0.6134 0.6261 0.5314 1

closenessi 0.0008 0.0199 0.2916 0.0134 1

degreei 0.0004 0.0182 0.3295 0.0135 0.7075 1

µ1i 0.6470 -0.6587 -0.0183 -0.0157 0.0072 0.0004 1

µ2i -0.6470 0.6587 0.0183 0.0157 -0.0072 -0.0004 -1.0000 1

CV(Λ∗
1l) CV(Λ∗

2l) CV(w∗
l ) CV(θl) CV(closenessl) CV(degreel) CV(µ1l) CV(µ2l)

CV(Λ∗
1l) 1

CV(Λ∗
2l) 0.2574 1

CV(w∗
l ) 0.2597 0.3537 1

CV(θl) 0.4656 0.6389 0.5578 1

CV(closenessl) 0.1260 0.0786 0.0642 0.2156 1

CV(degreel) -0.0563 -0.1678 0.0451 -0.2254 -0.2215 1

CV(µ1l) 0.4842 -0.0632 -0.2405 -0.1219 -0.0439 -0.0404 1

CV(µ2l) 0.0456 0.5774 -0.0615 0.1009 -0.0848 -0.1315 0.0289 1

Notes: Simple correlations for 100 random tree networks with 20–30 nodes. The top panel of the table gives
correlations at the level of individual nodes, whereas the bottom panel of the table gives correlations at the level of
the whole network. The shares λ∗

si are computed as λ∗
si = n∗

si/(∑j n
∗
sj), for s = 1, 2. CV denotes the coefficient of

variation, whereas Λ∗
1 , Λ∗

2 , w∗ , and θ denote the equilibrium vectors of industry shares in sectors 1 and 2, masses
of firms, wages, and market size, respectively.

As can be seen from the top panel of Table 5, size and accessibility are strongly positively
linked to the equilibrium industry shares and to the equilibrium wages, respectively. Although
market size still positively influences wages, there is almost no correlation between our mea-
sures of centrality and the shares of firms in the two industries. As can further be seen, there
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is regional specialization, as shown by the negative correlation between the equilibrium shares
in both industries, as well as the positive correlation with the own expenditure share, and the
negative correlation with the other industry’s expenditure share. In words, this specialization
is strongly driven by differences in local spending patterns, as can be seen from the last two
lines of Table 5. Our finding thus extends the result on ‘comparative advantage’ from Propo-
sition 1 to a multi-region setting. Note, finally, that market size has roughly the same positive
impact on industry location in both industries conditional on expenditure shares. This is the
manifestation of market size as ‘absolute advantage’, as subsumed by Proposition 2, which
states that more centrally located regions should have, ceteris paribus, higher wages.

As for Model 1, we run the same regressions (26), (27), (28) and (29). The first two regres-
sions are now run separately for the equilibrium shares of firms in each of the two sectors, λ∗1i
and λ∗2i. In all regressions, we control for the region-specific share of expenditure on the two
differentiated sectors, µ1i and µ2i.

3.2.1 Results for individual nodes

Table 6 shows that market size, θi, and the expenditure share for the two differentiated sectors,
µ1i and µ2i, are the key variables that explain the spatial distribution λ∗1i and λ∗2i of firms in
the two sectors. The positive sign for market size is expected as labor market clearing (23)
requires that the number of firms in the two sectors must sum to the population share. Once
we control for local market size and the spending patterns, the centrality of a region is no
longer associated with its industry share. The reason is that centrality affects both industries
in the same way, which suggests that accessibility is akin to an absolute Ricardian advantage
and should, therefore, be capitalized into factor prices.16 This effect can precisely be seen
from the bottom panel of Table 6. Clearly, both market size, θi, and centrality are positively
linked to wages, w∗

i . Regions with better access to markets and/or more trading links tend
to have higher wages. Last, note that the expenditure shares µsi are nowhere near statistical
significance in our wage regressions. In words, different expenditure shares affect industries
differentially and, therefore, have no strong effect on regional wages. This is in line with our
previous results on comparative and absolute advantage.17

16This result would be weakened if accessibility affected industries in different ways (as in, e.g., Hanson and
Xiang, 2004). In that case, accessibility would also be in part a ‘comparative advantage’ and would, therefore,
have a much stronger impact on industry location and not only wages.

17We performed extensive sensitivity analyses with respect to σ and µ1i and µ2i in Model 2. Holding the
network structure constant, we study the behavior of industry location (λ1i and λ2i) and regional wages, wi,
when these basic parameters change. The results consistently show that increasing σ in the range (1, 10] leads to
higher nominal wages, while industry shares remain largely unaffected. In accord with the regression results that
we report in the main text, the income shares map into the specialization. Solving a hundred times the model for
each specific network and assigning random values of µ1i and µ2i, we find that industry shares present a strong
correlation with income shares (ρ = 0.7). Income shares, however, are basically uncorrelated with nominal wages.
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Table 6: ols regression results for individual nodes (Model 2).

Dependent variable: λ∗
1i

(i) (ii) (iii) (iv) (v) (vi)
Closenessi -0.0034 -0.0048 -0.0021

(-1.425) (-1.430) (-0.605)
Degreei -0.0002 -0.0002 -0.0002

(-0.935) (-0.854) (-0.434)
θi 0.9885a 0.9884a 1.0037a 1.0037a 0.9741a 0.9741a

(71.008) (70.985) (51.605) (51.575) (48.881) (48.867)
µ1i 0.1068a 0.1068a 0.1090a 0.1090a 0.1046a 0.1046a

(74.763) (74.737) (55.252) (55.219) (50.567) (50.548)
Constant -0.0510a -0.0528a -0.0520a -0.0547a -0.0502a -0.0512a

(-27.273) (-47.617) (-20.666) (-37.983) (-19.246) (-32.047)
Network type Both Both ba ba Equal Equal
Network dummy Yes Yes No No No No
Observations 2,498 2,498 1,274 1,274 1,224 1,224

Adjusted R2 0.807 0.807 0.814 0.813 0.801 0.801

Dependent variable: λ∗
2i

(i) (ii) (iii) (iv) (v) (vi)
Closenessi 0.0046c 0.0060c 0.0032

(1.904) (1.779) (0.941)
Degreei 0.0003 0.0003 0.0002

(1.176) (1.083) (0.527)
θi 0.9921a 0.9922a 0.9756a 0.9757a 1.0079a 1.0080a

(71.139) (71.117) (50.663) (50.627) (49.907) (49.890)
µ2i 0.1074a 0.1073a 0.1088a 0.1087a 0.1060a 0.1059a

(75.016) (74.970) (55.664) (55.615) (50.564) (50.533)
Constant -0.0561a -0.0536a -0.0568a -0.0535a -0.0552a -0.0534a

(-29.964) (-48.900) (-22.845) (-38.461) (-20.843) (-33.548)
Network type Both Both ba ba Equal Equal
Network dummy Yes Yes No No No No
Observations 2,498 2,498 1,274 1,274 1,224 1,224

Adjusted R2 0.813 0.813 0.821 0.820 0.805 0.805

Dependent variable: w∗
i

(i) (ii) (iii) (iv) (v) (vi)
Closenessi 0.1828a 0.2202a 0.1475a

(17.456) (13.412) (11.378)
Degreei 0.0190a 0.0172a 0.0233a

(20.650) (14.251) (15.669)
θi 2.0129a 2.0107a 1.8348a 1.8355a 2.1892a 2.1743a

(33.071) (33.747) (19.452) (19.614) (28.726) (29.726)
µ1i -0.0047 -0.0039 -0.0072 -0.0074 -0.0026 -0.0003

(-0.746) (-0.638) (-0.749) (-0.783) (-0.334) (-0.038)
Constant 0.7609a 0.8440a 0.7363a 0.8419a 0.7760a 0.8275a

(93.127) (177.839) (60.309) (121.672) (77.848) (141.247)
Network type Both Both ba ba Equal Equal
Network dummy Yes Yes No No No No
Observations 2,498 2,498 1,274 1,274 1,224 1,224

Adjusted R2 0.365 0.392 0.305 0.316 0.442 0.486

Notes: We set σ = 5. Simple ols regressions. ba denotes networks generated using
the Barabási and Albert (1999) algorithm. T -stats in parentheses. a, b, and c denote
coefficients significant at 1%, 5%, and 10%, respectively.
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To summarize, regional size and expenditure patterns determine the structure of regional
specialization in the two industries in Model 2, whereas accessibility has a strong impact on
wages. Observe that a home market effect – defined as a more than proportional increase in
industry shares in response to an increase in local market size, i.e., ∂λ∗i /∂θi > 1 – generally
does not arise, as shown in Table 6. The reason is that when all sectors are operating under
increasing returns and face trade costs, not all of them can – by definition – exhibit home
market effects (see Hanson and Xiang, 2004). In that case, an alternative definition of the hme,
involving both the size θi and the expenditure share µsi, would be required. To the best of our
knowledge, such a definition has not been used to date in the literature.

3.2.2 Results for the whole network

As shown in Table 7, inequality in the distribution of market sizes and in the distribution of
expenditure shares in the two differentiated sectors are the key variables that drive the inequal-
ity in the spatial distribution of firms and wages. Inequality in the network characteristics are
only weakly associated with inequality in the equilibrium distributions of firms and wages. It
is worth emphasizing that, as can be seen from columns (iii) and (iv) in the bottom panel of
Table 7, more dispersion in the expenditure shares is negatively associated with wage inequal-
ity in the case of ba-type networks. This result is similar to the one linking the dispersion of
population shares θi to wage inequality in the case of ba networks in Model 1 (see the bottom
panel of Table 4). In the case of equal random networks, there is no significant link between
the dispersion in expenditure shares and wage dispersion.

3.3 Summary of results

A number of findings emerge from the foregoing analyses of the two models. Let us briefly
summarize the key insights.

Starting from Model 1 with a single ces sector, we have firstly seen that accessibility has a
strong impact on industry location and, to a lesser extent, on wages. This suggests that any
analysis involving trade in homogeneous goods and focusing on two regions only – or disre-
garding the spatial structure of the trading network entirely – is likely to miss an important
part of the story. Secondly, we have shown that the correlations between w∗

i and either λ∗i

or θi are quite low, i.e., there is no strong correlation between either market size or the equi-
librium industry shares and the equilibrium wages. As we have explained, this unexpected
result is due to the fact that incomplete specialization in the production of the homogeneous
good imposes strong restrictions on the relative wages of the trading regions, which break the
link between market size and wages over the range of incomplete specialization. In that case,
relative wages across regions depend on relative trade costs only but are independent of the
regions’ market sizes. Last, the home market effect generally holds even when trading the
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Table 7: ols regression results for the whole network (Model 2).

Dependent variable: CV(Λ1)
(i) (ii) (iii) (iv) (v) (vi)

CV(Closeness) 0.5556 -0.3225 1.5801

(0.711) (-0.301) (1.356)
CV(Degree) 0.0471 0.0830 -0.0734

(0.660) (1.090) (-0.422)
CV(θ) 0.6972a 0.7249a 0.7276a 0.7300a 0.6774a 0.6642a

(7.248) (7.475) (5.906) (6.161) (4.439) (3.679)
CV(µ1) 1.0501a 1.0482a 0.9557a 0.9418a 1.2256a 1.1589a

(7.761) (7.748) (5.610) (5.604) (5.518) (5.112)
Constant -0.0827 -0.0060 0.1517 0.0078 -0.3783 0.0541

(-0.444) (-0.055) (0.648) (0.059) (-1.261) (0.227)
Network type Both Both ba ba Equal Equal
Network dummy Yes Yes No No No No
Observations 100 100 51 51 49 49

Adjusted R2 0.502 0.502 0.537 0.547 0.470 0.451

Dependent variable: CV(Λ2)
(i) (ii) (iii) (iv) (v) (vi)

CV(Closeness) 0.4631b 0.6153c 0.3053

(2.082) (1.708) (1.157)
CV(Degree) 0.0303 -0.0135 0.1105

(0.390) (-0.183) (0.552)
CV(θ) 1.0065a 1.0153a 0.9901a 0.9865a 0.9289a 0.9954a

(9.735) (9.816) (8.663) (8.792) (4.660) (4.459)
CV(µ2) 1.1911a 1.2004a 1.0333a 1.0267a 1.4361a 1.4178a

(8.757) (8.750) (6.932) (6.694) (5.437) (5.443)
Constant -0.1996 -0.2268b -0.0998 -0.0889 -0.3113 -0.3683

(-1.005) (-2.027) (-0.440) (-0.634) (-0.949) (-1.649)
Network type Both Both ba ba Equal Equal
Network dummy Yes Yes No No No No
Observations 100 100 51 51 49 49

Adjusted R2 0.661 0.661 0.686 0.686 0.643 0.646

Dependent variable: CV(w)
(i) (ii) (iii) (iv) (v) (vi)

CV(Closeness) -0.0826 -0.1392 0.0639

(-0.414) (-0.409) (0.303)
CV(Degree) 0.0154 0.0107 0.0527c

(0.845) (0.437) (1.757)
CV(θ) 0.1633a 0.1661a 0.1599a 0.1574a 0.1697a 0.1993a

(6.650) (6.730) (4.076) (4.126) (6.143) (6.409)
CV(µ1) -0.0688b -0.0680c -0.1209b -0.1240b 0.0078 0.0180

(-1.992) (-1.974) (-2.230) (-2.292) (0.195) (0.462)
Constant 0.0270 -0.0028 0.0726 0.0352 -0.0449 -0.0864b

(0.569) (-0.102) (0.974) (0.826) (-0.827) (-2.110)
Network type Both Both ba ba Equal Equal
Network dummy Yes Yes No No No No
Observations 100 100 51 51 49 49

Adjusted R2 0.339 0.342 0.301 0.301 0.433 0.468

Notes: CV stands for ‘coefficient of variation’. We set σ = 5. Simple ols regressions.
ba denotes networks generated using the Barabási and Albert (1999) algorithm. T -
stats in parentheses. a, b, and c denote coefficients significant at 1%, 5%, and 10%,
respectively.
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homogeneous good is costly, provided that it is less costly than trading the differentiated good.
Turning next to Model 2 with two ces sectors, both absolute market size – as captured by θi

– and centrality – as measured by either closeness or the degree distribution – are capitalized
into factor prices, thus showing that they constitute absolute advantage affecting all industries
in the same way. Differences in spending patterns – as captured by the µsi – are however
capitalized into industry structure, thus showing that they constitute comparative advantage
affecting industries differently. Our findings, therefore, extend the theoretical results of Behrens
and Ottaviano (2011), which have been derived with two regions only, to a multi-region setting.

Last, it is worth pointing out that the effects of accessibility and market size on wages are an
order of magnitude larger in Model 2 than in Model 1 (compare Tables 6 and 2). As we have ex-
plained, the reason is that the equalization of prices in the traded homogeneous sector imposes
strong restrictions on the determination of wages among trading partners when specialization
is incomplete (a very frequent case). This in turn breaks the link between accessibility and
market size in the wage determination. In a nutshell, market size and centrality matter all the
more the more industries are subject to trade costs and increasing returns to scale.

4 Numerical application to Spanish regions

While the foregoing numerical simulations highlight regularities of our multi-region trade
models without fpe, they provide no sense of how well those models perform when confronted
with data. The aim of this section is hence to use calibrated versions of the models to check their
fit with the data and to run a series of counterfactuals. To this end, we compute the equilibria
of the two models using Spanish provincial data in two years: 1980 and 2007 (see Appendix D
for a description of the data). This is an interesting period because it coincides with significant
changes in demographic trends, and with important infrastructure improvements. Paluzie et

al. (2007) discuss the migration trends in Spain from rural to urban areas that, starting in
the sixties, still characterized demographic trends in the eighties. The fundamental tendency
was the agglomeration of population in ever larger urban areas. Zofío et al. (2014) show that
the decentralization of public administration – as Spain joined the European Community –
accompanied by substantial funding from the European Regional Development Plan (erdp)
helped to finance remarkable improvements in the road network. Along with price changes in
the transportation sector, mainly driven by salaries and fuel, generalized transport costs fell by
about 15% over the period we consider. In a nutshell, our study period was one of important
changes in the population distribution and in transport costs, both of which should have a
strong influence on the spatial equilibrium structure of the economy.

Our aim in the remainder of this section is twofold. First, we compare the equilibrium
distribution of economic activity predicted by our models with the data. Doing so will allow
us to assess to what extent the models can ‘replicate’ the observed distributions. Second, we use
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the model to run some simple counterfactuals with respect to changes in demographic trends
and transportation costs. We disentangle the role of market size from the role of transportation
costs by shutting down one of the two channels when running our counterfactuals. More
precisely, we first look at the equilibria of the models in the absence of any changes in the labor
force between 1980 and 2007, i.e., when changes are ‘solely’ driven by changes in transportation
costs. Second, we repeat the exercise by assuming that there are no changes in transportation
costs between 1980 and 2007, so that changes are ‘solely’ driven by changes in the spatial
distribution and in the size of the labor force.

4.1 Equilibrium distributions vs. observed distributions

The equilibrium distributions of firms in 1980 and 2007, as well as the equilibrium wages,
are summarized in Table 8. Our results show large disparities in the distribution of firms
across provinces, and those disparities increased between 1980 and 2007. In each year, the
distribution of firms varies from almost 0% to about 16%–25%. Not surprisingly, the provinces
of Madrid and Barcelona have the highest shares of firms in both models. These provinces
are the largest – in terms of population shares – which, as reported in the previous sections,
is the main determinant of firm shares (followed, to a lesser extent, by centrality that benefits
Madrid as the geographical center of the Spanish infrastructure network). On the contrary, very
small provinces situated in the Iberian Peninsula plateau (plain or meseta) are almost devoid
of production (e.g., the provinces surrounding Madrid such as Toledo, Cuenca, Guadalajara,
Segovia, or Ávila have a really negligible share of firms).

To tentatively gauge the predictive power of the models, we check the statistical significance
of the differences between the observed distributions of production in ‘differentiated products’
and those associated with the equilibria of the models: λ∗i (Model 1) and λ∗1i and λ∗2i (Model 2).
Besides Pearson’s r and Spearman’s ρ coefficients of correlation, we also test the equality of
distributions by way of a Kolmogorov-Smirnoff test. Table 9 reports large and significant cor-
relations, both for linear (Pearson) and rank (Spearman) dependencies. The Pearson standard
correlation ranges from 0.8638 in Model 1 for 2007 to a remarkable 0.9910 for Model 2 in the
same year. The maximum values for the Spearman correlations correspond to the same models
and year. Additionally, the hypothesis of equality of distributions cannot be generally rejected,
except for the 2007 distribution in Model 1. Our results show that solving the models using
real data yields model equilibrium distributions of economic activity that are in many cases
statistically hard to distinguish from those observed in the real economy.

Turning to wages, we however do not find large correlations between those proxied by gdp

per employee (our empirical counterpart for ‘wages’ at the aggregate level) and the solutions
to the two models. Hence, while the models perform well in terms of their spatial predictions
of economic activity, they perform much worse in terms of their predictions for prices. There
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Table 8: Simulation results for Model 1 and Model 2.

Model 1 Model 2

λ∗
i w∗

i λ∗
1i λ∗

2i w∗
i

Region 1980 2007 1980 2007 1980 2007 1980 2007 1980 2007

Almeria 0.012 0.020 1 1 0.010 0.015 0.012 0.016 1 1

Cadiz 0.02 0.009 1.046 1.027 0.021 0.022 0.024 0.025 1.122 1.051

Cordoba 0.015 0.004 1.073 1.049 0.017 0.014 0.019 0.015 1.089 1.031

Granada 0.010 0 1.052 1.033 0.017 0.015 0.019 0.017 0.937 0.964

Huelva 0.005 0.001 1.061 1.043 0.009 0.009 0.010 0.010 1.074 1.002

Jaen 0.014 0.002 1.067 1.045 0.014 0.010 0.016 0.012 0.988 0.957

Malaga 0.024 0.028 1.040 1.033 0.023 0.029 0.025 0.032 1.051 1.042

Sevilla 0.058 0.096 1.077 1.067 0.033 0.036 0.037 0.040 1.260 1.169

Huesca 0.001 0 1.073 1.047 0.007 0.006 0.006 0.005 0.931 0.892

Teruel 0 0 1.089 1.059 0.005 0.004 0.004 0.003 0.953 0.933

Zaragoza 0.027 0.015 1.067 1.034 0.026 0.027 0.023 0.023 1.012 0.954

Asturias 0.031 0.012 1.020 1.008 0.035 0.023 0.034 0.022 0.878 0.812

Cantabria 0.011 0.012 1.049 1.046 0.016 0.013 0.016 0.014 0.919 0.934

Avila 0 0 1.102 1.076 0.005 0.004 0.005 0.004 1.034 1.089

Burgos 0.004 0.003 1.077 1.048 0.011 0.009 0.011 0.010 1.003 1.016

Leon 0.015 0 1.062 1.047 0.017 0.010 0.018 0.010 0.98 0.946

Palencia 0.005 0.001 1.106 1.087 0.005 0.004 0.006 0.004 1.071 1.045

Salamanca 0.012 0 1.087 1.052 0.010 0.007 0.010 0.007 1.101 1.020

Segovia 0 0 1.109 1.097 0.004 0.004 0.005 0.005 1.097 1.159

Soria 0.002 0.003 1.117 1.098 0.003 0.002 0.003 0.003 1.080 1.089

Valladolid 0.023 0.033 1.116 1.08 0.013 0.013 0.013 0.013 1.175 1.145

Zamora 0.002 0 1.082 1.061 0.007 0.004 0.007 0.004 1.002 0.981

Albacete 0.004 0 1.092 1.062 0.010 0.009 0.009 0.008 1.047 1.048

Ciudad Real 0.008 0.001 1.085 1.050 0.013 0.011 0.012 0.010 1.020 1.045

Cuenca 0 0 1.100 1.073 0.006 0.005 0.006 0.004 1.007 1.066

Guadalajara 0 0 1.102 1.079 0.004 0.005 0.004 0.005 1.059 1.109

Toledo 0 0 1.081 1.066 0.014 0.014 0.013 0.014 1.090 1.147

Barcelona 0.171 0.190 1.047 0.991 0.14 0.145 0.133 0.138 1.271 1.095

Girona 0 0 1.035 1.009 0.018 0.02 0.017 0.019 0.884 0.789

Lleida 0 0 1.053 1.035 0.012 0.012 0.012 0.012 0.882 0.888

Tarragona 0.014 0.005 1.088 1.061 0.017 0.019 0.016 0.018 1.153 1.062

Alicante 0.045 0.057 1.092 1.065 0.032 0.038 0.033 0.039 1.282 1.178

Castellon 0.016 0.014 1.093 1.068 0.014 0.013 0.014 0.015 1.213 1.105

Valencia 0.064 0.067 1.034 1.011 0.058 0.057 0.060 0.061 1.16 1.103

Badajoz 0.014 0.007 1.061 1.038 0.014 0.012 0.017 0.015 0.997 0.99

Caceres 0.006 0 1.066 1.041 0.010 0.006 0.012 0.009 0.931 0.945

A coruna 0.036 0.021 1.036 1.02 0.033 0.024 0.034 0.025 1.112 0.984

Lugo 0.012 0 1.047 1.036 0.016 0.007 0.017 0.008 0.989 0.916

Orense 0.016 0.003 1.054 1.052 0.016 0.006 0.017 0.007 1.072 1.010

Pontevedra 0.035 0.038 1.051 1.046 0.030 0.021 0.031 0.022 1.184 1.081

Madrid 0.157 0.256 1.142 1.095 0.123 0.181 0.113 0.165 1.505 1.475

Murcia 0.017 0.02 1.055 1.065 0.022 0.028 0.025 0.033 1.086 1.117

Navarra 0.006 0.004 1.056 1.033 0.016 0.017 0.015 0.018 0.978 0.959

Alava 0.012 0.022 1.123 1.090 0.009 0.009 0.008 0.008 1.302 1.156

Guipuzcoa 0.025 0.031 1.053 1.102 0.022 0.021 0.019 0.018 1.28 1.204

Vizcaya 0.031 0.01 1.041 1.003 0.033 0.031 0.029 0.026 1.074 0.936

La Rioja 0.02 0.016 1.139 1.028 0.008 0.008 0.007 0.008 1.283 1.026

Mean 0.021 0.021 1.072 1.05 0.021 0.021 0.021 0.021 1.077 1.035

Std. Dev 0.039 0.054 0.030 0.029 0.030 0.038 0.028 0.035 0.133 0.117

Max. 0.171 0.256 1.142 1.102 0.140 0.181 0.133 0.165 1.505 1.475

Min. 0 0 1 0.991 0.003 0.002 0.003 0.003 0.878 0.789

Notes: Simulations use the following values. For Model 1, we let σ = 5, µ = 0.4, and ξ = 0.7.
For Model 2, we let σ = 5. See Appendix D for a discussion of these choices.
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are two possible reasons for this. First, gdp per capita – though widely used in the literature
(see Head and Mayer, 2004) – is only a crude proxy for wages. Second, as shown in the previous
section, the multi-region simulated models do not deliver clear results as to the roles of market
size and centrality on wages. It is thus not surprising that their empirical fit to wage data in
also fairly weak.

Table 9: Differences between observed and model distributions.

Test Pearson’s1 r Spearman’s2 ρ Kolmogorov-Smirnov3

Model Share 1980 2007 1980 2007 1980 2007

1 λ⋆
i 0.9386 0.8638 0.7222 0.7261 0.1915 0.4043

(0.000) (0.000) (0.000) (0.000) (0.3207) (0.0006)
2 λ⋆

1i 0.9627 0.9334 0.8321 0.8582 0.1702 0.2128

(0.000) (0.000) (0.000) (0.000) (0.4662) (0.2096)
λ⋆

2i 0.9401 0.991 0.9339 0.9886 0.2128 0.1277

(0.000) (0.000) (0.000) (0.000) (0.2096) (0.8117)

Notes: 1,2The null hypothesis is that both variables are independent; 3The null
hypothesis is that both variables come from the same continuous distribution.
p-values for all tests in parenthesis.

4.2 Population, transport costs, and trends in inequality

The equilibria computed in the foregoing section can be used to analyze to what extent the
models capture the process of agglomeration that has taken place in Spain between 1980 and
2007, and which resulted in a more unequal distribution of manufacturing activity.

Figure 1: Manufacturing distributions for Model 1.
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Figure 1 depicts the changes in the equilibrium manufacturing shares for Model 1. The
equilibrium distributions in 1980 and 2007 are displayed as solid and as dashed lines, respec-
tively. As can be seen from Figure 1, although the distributions are fairly similar (because there
is a lot of inertia in spatial structures), the one in 2007 exhibits a higher density for low values
of the manufacturing shares in the area identified by A (just below the mean value of 0.021,
depicted by the vertical line). Another difference pointing towards an increase in inequality
is the agglomeration of manufacturing activity that can be seen in 2007, with the equilibrium
shares of Madrid and Barcelona driving this process. Indeed, both provinces increased their
values from 0.167 to 0.196 and from 0.157 to 0.254, respectively. This evolution is visible from
the dilation of the right tail of the distribution in the area identified by C. For values in the
range between 0.05 and 0.15, both distributions display similar densities (area B) between the
two years.18

To provide a quantitative sense of the increase in inequality, we have computed the Gini
indices G for the distribution of observed manufacturing shares and for the equilibria of the two
models in both years. Both models capture the increase in inequality, even if both clearly overstate

it. Observed inequality in the distribution of the manufacturing sector increases by 0.60% (from
G80 = 0.7700 to G07 = 0.7816), while Model 1 yields an increase in inequality of 12.84% (from
G80

M1 = 0.7805 to G07
M1 = 0.8808). Using the equilibria from Model 2, the observed increase

in inequality is 2.12% for the manufacturing sector (from G80
1 = 0.7609 to G07

1 = 0.7770), and
2.41% (from G80

2 = 0.7762 to G07
2 = 0.7950) for the service sector, respectively.19 The model

again overpredicts these values at 11.69% (G80
M2,1 = 0.6841 to G07

M2,1 = 0.7641), and 11.90%
(G80

M2,2 = 0.6683 to G07
M2,2 = 0.7479), respectively.

We may thus conclude that while the model reasonably well predicts the spatial distribution
of manufacturing in Spain for a given year, it overpredicts the impacts of changes in population
or changes in transportation costs on that spatial distribution.

4.3 Counterfactuals

Keeping in mind the caveat from the previous section, we finally run two counterfactuals,
the aim of which is to simulate the spatial equilibrium that would prevail if only population
changes to its 2007 values, but not the transportation costs which are kept fixed at their 1980

values, and vice versa. Put differently, in the first counterfactual we fix the transport costs to
their 1980 values and use observed population changes; whereas in the second counterfactual,
we fix population to their 1980 values and use observed changes in transportation costs. In so
doing, we can compare the ‘pure’ effect of population changes conditional on transport costs,

18Similar results are observed for the two distributions of shares in Model 2. The results are available from the
authors upon request.

19In Appendix D, we explain that the sectors are not defined in the same way in the two models. Hence the
difference in the changes in observed inequality in the data.
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and the ‘pure’ effect of changes in transport costs conditional on population. We compare the
equilibria of the model in 1980 and 2007 to those derived in the counterfactuals to determine
how each change contributes to the overall shift in the manufacturing shares.20

Figure 2: Manufacturing distributions for Model 1 (with counterfactual distribution).
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20Note that this is of course not an exact decomposition since the observed changes are not the sum of the
changes in the two alternative scenarios.
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The top panel of Figure 2 depicts the distributions of the counterfactual industry shares
(in red) for the case where only population changes; whereas the bottom panel of the figure
depicts the same change for the case where only transport costs change. Table 10 summarizes
the detailed results, with the first superscript referring to the reference year for the population
share, θi, and the second one referring to the bilateral transportation costs, φij .

As can be seen from the top panel of Figure 2, the increase in the density of the left tail of
the distribution of manufacturing shares is mainly driven by the change in the geographical
distribution of the labor force rather than the reduction in transportation costs. As can be seen
from the bottom panel of Figure 2, the effect of the latter is rather small, despite the fact that
over the 1980–2007 period the fall in the average value of the Generalized Transport Costs was
large.21 As this change was similar across provinces, their relative position in the network
remained basically unchanged. Observe that the fall in transport costs has slowed down the
process of agglomeration, as can be seen from the bottom panel of Figure 2.

Generally, when comparing the counterfactual distributions with the observed ones in 1980

and 2007, Figure 2 reveals that changes in the spatial distribution of regional market shares
have a stronger predictive power of changes in industrial specialization than changes in trans-
portation costs. Our results thus suggest that the reallocation of the labor force was the main
driver of agglomeration and larger inequalities as reflected by the change in the Gini indices.
Note that these results are compatible with those obtained in the simulations presented in Sec-
tion 3, and particularly with those in Table 2 for Model 1. In that case, the equilibrium shares
λ∗i depend mainly on the θi rather than on network features as captured by transportation costs
(i.e., closeness or degree). As the relative position of the provinces in the trading network did
not change much between 1980 and 2007, this explains the stability in the distributions of the
spatial equilibria when considering changes in this variable only.

To conclude on a policy note, observe that after three decades of significant investments in
the road network, the distribution of industry shares had not changed much in Spain. Thus,
these investments do not seem to have contributed much to territorial cohesion – though the
main goal of infrastructure investment in the eyes of policy makers is often to ‘reduce regional
inequality’. In fact, the opposite occured: Madrid and Barcelona had larger shares of economic
activity in 2007 than in 1980. These changes in industry shares were mostly driven by popula-
tion reshuffling, and little by decreasing transportation costs. The financial efforts of transport
improvements did apparently not translate into higher cohesion and lower inequality.22

21The fall in GTCij amounted to 14.14%. This fall corresponds to an increase of 109.65% in the average φij ,
thus implying that the freeness of trade more than doubled.

22One word of caution is in order. Our approach does not capture the fact that the population change between
1980 and 2007 would possibly have been different in the absence of changes in transportation costs. Conversely,
the changes in transportation costs would possibly have been different between 1980 and 2007 in the absence of
population movements. Hence, changing one parameter while holding fixed the other is only a partial exercise
(though, we believe, a suggestive one).
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Table 10: Counterfactual results for Models 1 and 2.

Model 1 Model 2

Region λ⋆80,07
i λ⋆07,80

i w⋆80,07
i w⋆07,80

i λ⋆80,07
1i λ⋆07,80

1i λ⋆80,07
2i λ⋆07,80

2i w⋆80,07
i w⋆07,80

i

Almeria 0.007 0.018 1 1 0.010 0.015 0.012 0.016 1 1

Cadiz 0.008 0.021 1.005 1.061 0.021 0.022 0.024 0.025 1.080 1.088

Cordoba 0.014 0.008 1.007 1.114 0.017 0.014 0.019 0.015 1.082 1.029

Granada 0.009 0.007 1.006 1.086 0.017 0.015 0.019 0.017 0.997 0.898

Huelva 0 0.005 1.006 1.077 0.009 0.009 0.010 0.010 1.037 1.032

Jaen 0.008 0.009 1.007 1.095 0.014 0.010 0.017 0.012 1.011 0.924

Malaga 0.021 0.035 1.005 1.049 0.023 0.029 0.025 0.032 1.056 1.037

Sevilla 0.094 0.06 1.007 1.112 0.033 0.036 0.037 0.040 1.203 1.223

Huesca 0 0 1.007 1.104 0.007 0.006 0.006 0.005 0.927 0.881

Teruel 0 0 1.009 1.116 0.005 0.004 0.004 0.003 0.975 0.897

Zaragoza 0.014 0.028 1.007 1.101 0.026 0.026 0.023 0.023 0.986 0.973

Asturias 0.017 0.021 1.004 1.032 0.035 0.023 0.033 0.022 0.878 0.807

Cantabria 0.01 0.01 1.006 1.062 0.016 0.014 0.016 0.013 0.980 0.868

Avila 0 0 1.011 1.110 0.005 0.004 0.005 0.004 1.136 0.969

Burgos 0.008 0.003 1.009 1.104 0.011 0.009 0.011 0.009 1.064 0.947

Leon 0 0.007 1.007 1.083 0.017 0.010 0.018 0.010 1.026 0.893

Palencia 0.023 0.003 1.011 1.150 0.005 0.004 0.006 0.004 1.103 1.003

Salamanca 0.001 0.008 1.009 1.095 0.010 0.007 0.010 0.007 1.088 1.02

Segovia 0.001 0 1.012 1.097 0.004 0.004 0.005 0.004 1.187 1.054

Soria 0.004 0.002 1.012 1.143 0.003 0.002 0.003 0.002 1.131 1.021

Valladolid 0.036 0.022 1.011 1.150 0.013 0.013 0.013 0.013 1.193 1.125

Zamora 0.004 0 1.009 1.101 0.007 0.004 0.007 0.004 1.057 0.914

Albacete 0 0.002 1.009 1.122 0.010 0.009 0.009 0.008 1.089 0.996

Ciudad Real 0.004 0.007 1.009 1.114 0.013 0.011 0.012 0.010 1.089 0.969

Cuenca 0 0 1.011 1.113 0.006 0.005 0.006 0.004 1.106 0.951

Guadalajara 0 0 1.011 1.079 0.004 0.005 0.005 0.005 1.124 1.032

Toledo 0 0 1.010 1.059 0.013 0.014 0.014 0.014 1.168 1.059

Barcelona 0.164 0.173 1.002 1.134 0.140 0.145 0.133 0.138 1.125 1.227

Girona 0.001 0 1.004 1.024 0.018 0.020 0.017 0.019 0.806 0.859

Lleida 0 0 1.006 1.061 0.012 0.012 0.012 0.012 0.916 0.847

Tarragona 0.013 0.019 1.007 1.110 0.017 0.019 0.016 0.018 1.087 1.120

Alicante 0.056 0.051 1.008 1.133 0.033 0.038 0.033 0.039 1.196 1.256

Castellon 0.019 0.015 1.008 1.126 0.013 0.014 0.014 0.014 1.139 1.168

Valencia 0.053 0.065 1.006 1.053 0.057 0.058 0.060 0.060 1.137 1.118

Badajoz 0.016 0.012 1.007 1.08 0.014 0.012 0.017 0.015 1.038 0.945

Caceres 0 0.004 1.008 1.076 0.009 0.007 0.012 0.009 1.001 0.869

A coruna 0.018 0.027 1.004 1.044 0.033 0.024 0.034 0.025 1.056 1.033

Lugo 0.011 0.003 1.006 1.066 0.016 0.007 0.017 0.007 1.019 0.875

Orense 0.017 0.006 1.007 1.076 0.016 0.006 0.017 0.007 1.126 0.939

Pontevedra 0.054 0.026 1.006 1.052 0.030 0.021 0.031 0.022 1.157 1.098

Madrid 0.193 0.208 1.009 1.253 0.124 0.18 0.113 0.166 1.464 1.509

Murcia 0.015 0.024 1.007 1.084 0.021 0.028 0.025 0.032 1.126 1.075

Navarra 0.004 0.006 1.007 1.089 0.015 0.018 0.016 0.018 0.983 0.950

Alava 0.03 0.011 1.011 1.200 0.009 0.009 0.008 0.008 1.193 1.251

Guipuzcoa 0.038 0.026 1.008 1.033 0.022 0.021 0.019 0.019 1.249 1.225

Vizcaya 0.003 0.028 1.005 1.069 0.034 0.031 0.029 0.027 0.974 1.023

La Rioja 0.009 0.02 1.009 1.193 0.008 0.008 0.007 0.008 1.059 1.233

Mean 0.021 0.021 1.008 1.095 0.021 0.021 0.021 0.021 1.077 1.026

Std. Dev 0.043 0.045 0.003 0.049 0.03 0.037 0.028 0.035 0.108 0.144

Max. 0.193 0.208 1.012 1.253 0.140 0.180 0.133 0.166 1.464 1.509

Min. 0 0 1 1 0.003 0.002 0.003 0.002 0.806 0.807

Notes: The simulations use the following values. For Model 1, we set σ = 5, µ = 0.4, and ξ = 0.7. For Model 2,
we let σ = 5. See Appendix D for a discussion of those choices.
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5 Conclusions

We have investigated the geographical distribution of industries and wages in a asymmetric
multi-region models without factor price equalization. Using systematic numerical simulations
for two different trade models – one with a homogeneous and a differentiated sector, and an-
other with two differentiated sectors – we have studied whether and how size and accessibility
are linked to the equilibrium industry shares and to wages.

Our key findings can be summarized as follows. First, absolute local market size and
accessibility are crucial in explaining a region’s wage. This is due to the fact that absolute
market size – as measured by the population size of a region – and accessibility – as measured
by network centrality or the degree distribution of a region – affect all industries in similar
ways, i.e., constitute a region’s absolute advantage. This effect is stronger and more systematic in
models where all sectors are subject to transport costs and exhibit increasing returns to scale.

Second the relative local market size of industries – as captured by their expenditure
shares – is crucial in explaining a region’s industrial composition. This is due to the fact that
relative spending patterns do not affect all industries in the same way, i.e., constitute a region-
specific comparative advantage. In a nutshell – and very much in line with Ricardian trade theory
– absolute advantage translates into higher wages, whereas comparative advantage maps into
specialization patterns.

Third, the correlation between equilibrium wages and equilibrium industry shares is rather
low in both models, thus suggesting that the two adjustment channels work largely inde-
pendently. Empirical tests and formal definitions of the home market effect should take into
account both dimensions – industry location and wages – in order to be relevant. To the best of
our knowledge, tests looking simulataneously at industry location and factor prices have not
yet been devised.

Finally, when applying the two models to Spanish data – using Generalized Transport Costs
between regions as a measure of trade frictions – we find that the models generally predict
well the distribution of industries, yet predict less well the spatial patterns in wages. The latter
may be due to the fact that gdp per capita – though often used in the literature – is a rather
crude proxy for wages. It may, however, also be linked to the fact that regional differences
in accessibility are generally less pronounced than regional differences in population shares.
Thus the second effect may dwarve the former in the applications.
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Appendix

A. Factor price equalization

Assume that the homogeneous good can be costlessly traded across all regions. This is the case
usually considered in the literature (e.g., Helpman and Krugman, 1985). Marginal cost pricing
then implies that the price of the homogeneous good is equal to the wage, which must be the
same everywhere. In other words, factor price equalization (fpe) holds.

In a multi-region world, the assumption of fpe has a major technical drawback. To see
this, ask under what conditions fpe will hold? Clearly, fpe will hold if and only if some
homogeneous good is produced in every region. Following Behrens, Lamorgese, Ottaviano,
and Tabuchi (2007), a sufficient condition is that

θi > µ, ∀i = 1, 2, . . . ,M . (A-1)

When (A-1) holds for all regions, and when trade in the homogeneous good is free, we have
wi = 1 for all i = 1, 2, . . . ,M . Observe that condition (A-1) is extremely restrictive. Consider,
e.g., a world with 30 regions. If market sizes θi were identical across regions, we must have
µ < 1/30. This is already very restrictive. But in our case, since we randomly assign the shares
θi to regions, we may have very small shares in some cases. In those cases, the foregoing
restriction can never be met for ‘reasonable values’ of µ.

Although condition (A-1) is technically speaking only a sufficient condition – i.e., we may
still have fpe even when it is violated – it seems still very unlikely to be met in general.
Another potential problem in the fpe version of the model is that it displays a much larger
share of ‘corner equilibria’, i.e., equilibria in which some regions are deindustrialized and do
not host any of the differentiated sector. We have simulated the model with fpe and find that
the number of nodes with a zero industry share is 920 out of 2498, i.e. 36.82%. This is a large
number, so that regression methods dealing with zeros may be required to analyze the general
properties of these equilibria.

In a nutshell, the fpe model does not make much sense in a world with many regions,
neither theoretically nor empirically, and it is difficult to implement consistently for reasonable
values of µ. We thus disregard it in the remainder of this paper.

B. Generating random tree networks

We use two different algorithms for generating random tree networks. The first one is based
on Barabási and Albert (1999). This algorithm starts with a network having M0 linked nodes.
Then, it adds new nodes one by one, up to MT nodes in total, where MT is the number of
nodes of the network (i.e., the number of regions in the model). Each time a new node is
added to the network at iteration t, it is connected to Mt−1 pre-existing nodes. The probability
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of being linked to an existing node during iteration t depends on the degree of that node in the
following way: pit = deg(it−1)/[∑j deg(jt−1)], where pit is the probability of being linked to
node i at iteration t, and where deg(it−1) is the degree of node i at iteration t− 1. The Barabási
and Albert (1999) preferential attachment algorithm tends to create networks with some nodes
that have a high degree, who are very well connected, and other nodes with a very low degree,
who are badly connected. Put differently, the resulting network tends to have hub-and-spoke
characteristics. By setting the initial number of nodes to M0 = 2, and by setting the number of
links for new nodes to m = 1, we ensure that the resulting network is a connected tree with
MT − 1 links.

In the second algorithm we use, new nodes are added to preexisting nodes with equal
attachment probability, which means that the probability of being linked to node i at iteration
t does not depend on the degree of node i. Formally, we have pit = 1/Mt−1, where Mt−1 is the
number of nodes in the network when adding the new node at iteration t.

Observe that the average degree of the tree network is equal to 2(MT − 1)/MT , indepen-
dently of the algorithm used to generate it. The reason is that in an undirected graph, the
degree sum formula is ∑j deg(j) = 2 |E|, where |E| is the number of links in the network.
Since in the generated tree networks there are MT − 1 links, the degree sum formula becomes
2(MT − 1). Then, the average degree of the network, defined as the degree sum over the
number of nodes in the network, is equal to 2(MT − 1)/MT .

Observe further that the standard deviation of the degree of the nodes in the network will
usually be higher in networks using the Barabási and Albert (1999) algorithm than in totally
random tree networks. The reason is that this algorithm tends to generate a few nodes with a
high degree, and a lot of nodes with a very low degree.

Last, when generating random links in the networks, we assume that the freeness of trade,
φij , between adjacent nodes i and j is given by 1/5. Hence, the freeness of trade between two
nodes i and k, linked by a path P = {i, j1, j2, . . . , jn−1, k} of length n, is given by

φik = ∏
(j,l)∈P

φjl. (B-1)

We use only shortest paths in the network, which are computed using the Floyd-Warshall
algorithm. Because we work with trees, the shortest path is uniquely determined.

C. Details on the numerical implementation

We first use the algorithms described in Appendix B to generate random networks. In all
cases, we compute the equilibria of the two models for the same set of networks. Hence, the
results are directly comparable across models. For computational reasons, we generate random
networks with between 20 and 30 nodes, the number of nodes being itself random (and drawn
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from a uniform distribution). Larger networks require too long to solve in the case with a
homogeneous good.

To solve the model, we transform the spatial equilibrium conditions (16) into complemen-
tary slackness conditions as follows:

[RMPi(n)− 1] ni = 0, i = 1, 2, . . . ,M , (C-1)

where we make explicit the dependence of the real market potential on the whole distribution
of firms n = (n1,n2, . . . ,nM ).

Model 1: One differentiated sector and one homogeneous sector. We add as nonlinear
inequality constraints the equilibrium conditions (13) in the homogeneous good market, the
labor market clearing conditions (14), and the complementary slackness conditions (15) for
exports of the homogeneous good:

(1 − µ)wiθi

mink {wkξτki}
− (X̃ii + ∑

j 6=i

X̃ji) = 0, ∀i

θ− niµ− (τiiX̃ii + ∑
j 6=i

ξτijX̃ij) = 0, ∀i

X̃ij

[
wiξτij − min

k
{wkξτkj}

]
= 0, ∀i

Furthermore, the following bounds for the variables are imposed: wi > 0 for all i and X̃ji ≥ 0
for all i and j. We also have the constraints that ni ≥ 0 for all i. Note that the presence of
the min function, which is not differentiable, makes it more difficult to solve the problem. To
overcome this problem, we replace all occurrences of the min function with a new variable,
zi. To make sure that this new variable zi will be equal to the minimum, we substract it
from the objective function (i.e., it works as a penalty). Thus, the solver will maximize it. We
add the constraint that it should not exceed the delivered price of the homogeneous good:
zi ≤ wjξτji, ∀i, j. In doing so, we make sure that – in the final iteration – zi is equal to the
minimum delivered price of the good.

We transform (C-1) into an equivalent problem that consists in minimizing the sum of
squared residuals subject to the set of equilibrium constraints. The numerical implementation
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of the minimization problem – when substituting out the min operator – is as follows:

(P1)





min
n

M

∑
i=1

{[RMPi(n)− 1] ni}
2 −

M

∑
i=1

zi

RMPi(n) ≤ 1, i = 1, 2, . . . ,M
(1 − µ)wiθi

zi
− (X̃ii + ∑

j 6=i

X̃ji) = 0, ∀i

θi − niµ− (τiiX̃ii + ∑j 6=i ξτijX̃ij) = 0, ∀i

zi ≤ wjξτji, ∀i, j
θi − niµ ≥ 0, ∀i

X̃ij [wiξτij − zj ] = 0, ∀i

ni ≥ 0, ∀i, wi > 0, ∀i

X̃ji ≥ 0, ∀i, j

(C-2)

As starting values for the solver, we use the population share, θi, for the mass of firms, i.e.,
n0
i = θi. For the wages, we use w0

i = 1 for all i. Last, we start with zeros for trade in the
homogeneous good, X̃0

ki = 0, and X̃0
ii = (1− µ)θi for the domestic supply of the homogeneous

good to the local market.

Model 2: Two differentiated sectors. For the model with two differentiated sectors, we min-
imize the sum of the squared residuals of the two complementary slackness conditions of the
real market potential for each sector:

[RMPsi(ns, w)− 1]nsi = 0, i = 1, 2, . . . ,M , s = 1, 2.

The minimization problem is similar to the one in the case with a homogeneous good, but with
two real market potential functions with the number of firms, nsi, in each sector, the inclusion
of the wages, and the constraint on the number of firms and the population shares:

(P2)






min
n1,n2,w

M

∑
i=1

{[RMP1i(n1, w)− 1]n1i}
2 +

M

∑
i=1

{[RMP2i(n2, w)− 1] n2i}
2

RMP1i(n1, w) ≤ 1, ∀i

RMP2i(n2, w) ≤ 1, ∀i

θi = n1i + n2i, ∀i

n1i > 0, ∀i, n2i > 0, ∀i, wi > 0, ∀i,

(C-3)

We solve the problems (P1) and (P2) for their equilibria {n∗i ,w∗
i }, and {n∗1i,n

∗
2i,w

∗
i }, re-

spectively. We use the matlab function fmincon with the interior-point algorithm. The code is
available upon request.
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D. Data and calibration

We work with Spanish provincial data at the nuts-3 level, totaling 47 observations.23 Table 11

provides details on the variables needed to solve the different models. For Model 1, these
include the labor force shares (θi), the gross value added shares in the differentiated sector
(the observed ni or λi), and the mean of the bilateral transportation costs (τij). Population and
industrial gross value added – our proxy for the differentiated production in the economy –
for 1980 are obtained from the ‘Spanish Domestic Income and its Distribution by Provinces’
(fbbva) publication. The 2007 data come from the Spanish National Statistics Institute (Instituto
Nacional de Estadística, ine). The fbbva data on private gross value added at the provincial
level is disaggregated into Agriculture, Energy, Industry, Construction, and Services. Bilat-
eral shipping costs are measured as the monetary value of the generalized transportation cost
(GTCij) of delivering one ton of cargo between origin i and destination j. Zofío et al. (2014)
describe the model assuming a cost minimizing behavior on the part of transportation firms,
and determine the least cost optimal itineraries using geographical information systems that
account for the actual road network in those years. In Table 11, we provide the mean value of
all bilateral transportation costs for each province, i.e., GTC

t
ij =

1
47 ∑

47
i=1 GTCt

ij . Following the
definition of the freeness of trade, φij , transport costs are computed as follows:

φij = τ1−σ
ij =

(
GTCij

min{GTCij}

)1−σ

∈ [0, 1]. (D-1)

As for the structural parameters µ and σ of the model, few studies have attempted to test
the main propositions of new trade theory and new economic geography using Spanish data.
Pons et al. (2007) estimate a migration equation based on an neg model, and obtain a value
for σ between 2.8 and 4.2, conditional on the values of the other parameters. Gómez-Antonio
and Fingleton (2012) adopt a value of σ = 6.25 when analyzing the impact of the public capital
stock on Spanish productivity. Their choice is justified on the grounds that it coincides with
the key estimates in the literature (e.g., Table 5 in Head and Mayer, 2004). More recently,
Broda and Weinstein (2006) estimate the elasticities of substitution for traded goods imports
to the US using sitc rev2 for 1972–1988, and sitc rev3 for 1990–2001 at the 3-, 4-, and 5-digit
levels, respectively. At the 3-digit level and across all goods, they find a mean elasticity of
6.8 from 1972–1988 and of 4.0 from 1990–2001, respectively. Looking only at differentiated
goods – as defined using the Rauch (1999) classification – at the 4-digit level, they find a mean
elasticity of 5.2 from 1972–1988 and of 4.7 from 1990–2001, respectively. Since the estimates
obtained by these authors are probably the best currently available, and since they are roughly
in line with the estimates obtained for Spain, we take the midpoint value of σ = 5 (as we
also assumed in the numerical simulations performed in the previous sections). Turning to

23We use all Spanish provinces of the Iberian Peninsula (i.e., we exclude the Balearic islands and the Canary
islands) because our measures of transport costs are derived from road freight transportation.
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the expenditure share on the differentiated product, µ, we use the expenditure shares for
manufacturing goods in total domestic demand coming from the household budget survey
published by ine, which in 2007 was 41.92% (data for 1980 is unfortunately unavailable, but
this share exhibits remarkable stability both in time and across developed countries, fluctuating
around this value depending on the economic cycle). For simplicity, we round the value to
µ = 0.4 (as we also assumed in the numerical simulations).

Since wages are endogenous, we require additional data to test whether the results of the
calibrated model match the observed values. In particular, we need information on wages. The
latter are obtained, as in many previous studies, by dividing aggregate gdp by the labor force
(see the literature review in Head and Mayer, 2004). For Model 1, we associate the homoge-
neous sector with agriculture, while the differentiated sector corresponds to the manufacturing
industry. As for the parameter ξ capturing the relative level of trade cost of the homogeneous
good compared to the differentiated good, we adopt a value 0.7. Based on data from the ‘On-
going Survey on Freight Road Transportation’, carried out by the Ministry of Transport (see
Ministerio de Fomento, MFOM, 2007a), we can calculate a comparative range of relative freight
costs in terms of tons-kilometer.24 The difference in the cost of shipping homogeneous and dif-
ferentiated products ranges from 0.7 to 1, with an average around 0.8. To keep consistency
with the values adopted in the previous section, we take the lower bound for ξ .

Finally, besides regional labor shares and bilateral trade costs, we need to identify two dif-
ferentiated sectors for Model 2. We associate the first differentiated sector with manufacturing
plus energy, whereas services are associated with the second sector. We leave out agriculture
– which is more homogeneous – and construction – which is essentially non-tradable – from
the analysis. We determine expenditure shares to match the production side from the ex-
penditure household survey, with the first share corresponding to manufacturing and utilities
(processed food, clothing, water, electricity,. . . ) and the second one to services (health, commu-
nication, leisure, education, accomodation,. . . ). These shares are, unfortunately, only available
at the nuts-2 regional level (States or Comunidades Autónomas), and they are an average of
all nuts-3 provinces included in each region. As a result we apply the regional values to all
provinces of a region. Although this reduces the regional variation, it is the only way we can
use that required piece of information. Table 11 below summarizes the data that we use.

24The ‘Ongoing Survey on Freight Road Transportation’ classifies shipments of manufactured goods according
to Council Regulation (EC) No 1172/98, and the prevalent type of vehicle used to transport each type of good,
along with the information provided by the Observatory of Road Freight Transport Costs on each type of vehicle
(mfom, 2007b).
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Table 11: Data for the 47 peninsular Spanish provinces (nuts-3 level).

Data 1980 Data 2007

Model All All Model 1 Model 2 Model 2 All All Model 1 Model 2 Model 2 Model 2

Region Labor Mean GTC G.V.A. G.V.A. G.V.A. Labor Mean GTC G.V.A. G.V.A. G.V.A. µ1

% AC Industry Ind+Ene Services % AC Industry Ind+Ene Services Ind+Ene
% % % % % %

Almeria 0.011 902.224 0.004 0.004 0.008 0.016 754.879 0.004 0.004 0.013 0.435

Cadiz 0.023 958.657 0.019 0.020 0.023 0.024 829.657 0.015 0.018 0.023 0.435

Cordoba 0.019 731.552 0.011 0.011 0.014 0.015 637.700 0.010 0.010 0.013 0.435

Granada 0.018 837.438 0.007 0.007 0.017 0.017 705.907 0.007 0.006 0.016 0.435

Huelva 0.010 889.677 0.012 0.013 0.008 0.009 751.991 0.007 0.009 0.009 0.435

Jaen 0.016 691.018 0.010 0.010 0.012 0.011 575.984 0.008 0.007 0.010 0.435

Malaga 0.024 959.042 0.010 0.010 0.028 0.031 821.833 0.008 0.008 0.032 0.435

Sevilla 0.036 799.573 0.023 0.022 0.036 0.038 685.078 0.026 0.031 0.035 0.435

Huesca 0.007 665.786 0.006 0.007 0.005 0.006 626.479 0.005 0.005 0.005 0.488

Teruel 0.005 562.000 0.005 0.007 0.003 0.004 517.986 0.003 0.005 0.003 0.488

Zaragoza 0.024 582.48 0.022 0.021 0.024 0.025 538.244 0.035 0.033 0.023 0.488

Asturias 0.034 936.268 0.033 0.042 0.018 0.023 810.024 0.027 0.029 0.022 0.471

Cantabria 0.016 778.184 0.017 0.016 0.014 0.014 649.923 0.016 0.015 0.013 0.471

Avila 0.005 457.276 0.002 0.002 0.004 0.004 403.746 0.002 0.003 0.003 0.460

Burgos 0.011 550.503 0.012 0.012 0.009 0.009 468.094 0.017 0.016 0.008 0.460

Leon 0.017 642.546 0.011 0.015 0.009 0.010 544.999 0.007 0.012 0.010 0.460

Palencia 0.006 536.972 0.005 0.006 0.004 0.004 445.716 0.005 0.005 0.003 0.460

Salamanca 0.010 557.103 0.006 0.008 0.007 0.007 472.840 0.005 0.005 0.007 0.460

Segovia 0.005 443.097 0.003 0.003 0.004 0.004 384.724 0.002 0.002 0.004 0.460

Soria 0.003 458.082 0.002 0.002 0.003 0.002 385.037 0.003 0.002 0.002 0.460

Valladolid 0.013 487.398 0.017 0.015 0.011 0.013 412.244 0.015 0.014 0.013 0.460

Zamora 0.007 597.455 0.003 0.004 0.004 0.004 493.528 0.002 0.002 0.004 0.460

Albacete 0.010 560.532 0.006 0.005 0.007 0.008 486.351 0.005 0.005 0.006 0.471

Ciudad Real 0.012 532.628 0.009 0.012 0.008 0.011 450.946 0.008 0.010 0.008 0.471

Cuenca 0.006 466.723 0.003 0.003 0.005 0.005 405.691 0.002 0.002 0.004 0.471

Guadalajara 0.004 451.418 0.005 0.005 0.004 0.005 394.952 0.006 0.006 0.004 0.471

Toledo 0.014 471.100 0.010 0.010 0.009 0.014 410.415 0.015 0.014 0.01 0.471

Barcelona 0.137 940.605 0.200 0.188 0.148 0.142 879.725 0.211 0.197 0.151 0.477

Girona 0.017 1166.402 0.017 0.016 0.018 0.020 1049.276 0.019 0.017 0.020 0.477

Lleida 0.012 797.744 0.011 0.012 0.011 0.012 720.807 0.010 0.009 0.011 0.477

Tarragona 0.017 747.118 0.024 0.030 0.015 0.019 667.449 0.021 0.022 0.019 0.477

Alicante 0.033 689.785 0.036 0.033 0.033 0.039 585.947 0.028 0.027 0.038 0.454

Castellon 0.014 633.634 0.016 0.017 0.012 0.014 562.700 0.024 0.023 0.012 0.454

Valencia 0.059 631.054 0.059 0.055 0.06 0.059 552.074 0.057 0.054 0.056 0.454

Badajoz 0.016 687.265 0.005 0.005 0.011 0.013 564.444 0.005 0.006 0.010 0.419

Caceres 0.011 602.853 0.005 0.007 0.006 0.008 502.318 0.002 0.004 0.007 0.419

A coruna 0.034 1084.937 0.022 0.025 0.025 0.025 861.847 0.018 0.025 0.023 0.452

Lugo 0.017 957.134 0.006 0.007 0.008 0.007 768.696 0.007 0.006 0.006 0.452

Orense 0.016 851.836 0.006 0.007 0.006 0.007 660.066 0.005 0.006 0.005 0.452

Pontevedra 0.031 1084.473 0.017 0.016 0.019 0.022 827.120 0.025 0.022 0.018 0.452

Madrid 0.118 442.748 0.130 0.124 0.217 0.173 387.143 0.128 0.136 0.215 0.483

Murcia 0.024 769.986 0.023 0.026 0.028 0.030 615.794 0.023 0.024 0.026 0.435

Navarra 0.016 625.343 0.025 0.023 0.016 0.018 575.838 0.031 0.029 0.016 0.471

Alava 0.009 639.970 0.02 0.018 0.008 0.009 556.701 0.024 0.021 0.009 0.494

Guipuzcoa 0.020 785.055 0.041 0.037 0.021 0.020 659.040 0.046 0.041 0.019 0.494

Vizcaya 0.031 777.486 0.059 0.057 0.036 0.029 682.024 0.042 0.047 0.032 0.494

La Rioja 0.008 490.447 0.008 0.007 0.006 0.008 513.364 0.012 0.011 0.007 0.482

Mean 0.021 700.268 0.021 0.021 0.021 0.021 601.220 0.021 0.021 0.021 0.461

Std. Dev 0.029 189.805 0.04 0.037 0.043 0.036 156.292 0.041 0.039 0.043 0.018

Max. 0.137 1166.402 0.200 0.188 0.217 0.173 1049.276 0.211 0.197 0.215 0.494

Min. 0.003 442.748 0.002 0.002 0.003 0.002 384.724 0.002 0.002 0.002 0.419

Notes: For Model 2, we have µ2 = 1 − µ1 by definition.
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