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1 Non-Technical Summary

The cross-countries di�erences in productivity and quality are noticeable and allow for various explanations.
In this theoretical project we study the impact of the market size on investments in productivity and
quality. Is it true that in a bigger market �rms make bigger investments? How �rms' investments correlate
with competetiveness, measured by Her�ndal-Hirshman Index or by markup? In a heterogenous industry,
do more productive �rms make bigger investments, or less e�cient �rms invest more, to compensate
initial in�ciency? First of all, for policy-making our topic may be interesting because of new qualitative
understanding of big-country advantages and similar gains from trade. Indeed (unlike Melitz (2003)) we
show that gains from trade liberalization consist not only in additional product diversity and �best �rms
selection� but also in fostering R&D, and thereby productivity and quality. Our classi�cation of markets
suggests that there can be industry-speci�c gains from trade liberalization, that allow to detect industries
most favorable for liberalization. Second, some modernizing countries (like Russia) do practice active
industrial policy including governmental aid or preferences to some industries: automobiles, agriculture,
etc. For such policy it can be interesting, that market outcome in sectors of di�erent kind can include too
many or too few �rms in the industry, compared to social optimum, in the spirit of Dixit and Stiglitz.
If their hypothesis will turn out holding under our more broad setting, then we �nd additional reasons
for industry-speci�c industrial policy for those industries where the number of �rms appears insu�cient
or excessive. In this case, a theorist should recommend regulations hampering/fostering entry into certain
industries satisfying our criterion of �e�cient number of competitors� connected with the demand elasticity.
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2 Introduction

On the empirical side of our question, the trade literature reports noticeable cross-countries di�erences
in productivity and related indicators. The stylized facts that we believe to be a challenge for theory are
the following: (1) �rms operating in bigger markets have lower markups (see e.g. Syverson (2007)); (2)
�rms tend to be larger in larger markets (see e.g. Campbell and Hopenhayn (2005)); (3) larger economies
export higher volumes of each good, export a wider set of goods, and export higher-quality goods (see
e.g. Hummels and Klenow (2005)); (4) within an industry there can be considerable �rm heterogeneity:
�rms di�er in e�ciency, in exporting or not (conditional on high/low e�ciency), in wages (see review in
Reddings (2011)); (5) �rms' investments in productivity are positively correlated with the export status
of the �rm and its size (see e.g. Aw et al. (2008)). In the IO literature, unlike trade, the focus is
not so much on the market size, but rather on �market structure and innovations.� Among empirical
studies linking competitiveness and innovations, several papers �nd here a positive correlation: Baily
and Gersbach (1995), Geroski (1995), Nickell (1996), Blundell at al. (1999), Galdón-Sánchez and Schmitz
(2002), Symeonidis (2002).1 These IO �ndings about competitiveness are in line with the stylized facts
from the trade literature on the market size, at least when we believe that a larger market attracts more
�rms.

In contrast, on theoretical side, typical oligopoly settings in IO predict that innovation should decline
with competition (probably, this discrepancy between theory and evidence stems from the simplifying
assumption of �xed number of oligopolists in IO, instead of free entry). As to trade theorists, some
also predict negative correlation. Here our main question manifests itself as �trade liberalization impact
on investments in productivity or quality,� in particular, Tanaka (1995) �nds from the Salop's circular
model that trade liberalization decreases the product quality. Somewhat similar is Fan (2005). Di�erent
conclusions are in Dasgupta and Stiglitz (1980) that encompass several settings including those where
di�erent �rms in�uence each other with their R&D. Within the opposite approach (independent �rms), the
most important paper driving theory closer to evidence�positively related competition and innovations�is
Vives (2008), discussed in more detail later on.

To mention other papers with such positive relation, Bustos (2011) studies in�uence of trade on tech-
nology adoption in the classical Melitz model supplemented by endogenous choice of technology (available
technologies are discrete). In this case trade liberalization increases the share of �rms using a high-
investment technology. In Yeaple (2005) the set of technologies chosen is also discrete, every producer
chooses also the quality of labour used (skilled or unskilled). Then exporting �rms are larger, employ more
advanced technologies, pay higher wages, are more productive, and a reduction in trade costs can induce
�rms to switch technologies.

What seems a restrictive assumption in these studies, is the utility function of very speci�c form. We
prefer to follow Vives (2008), who considers general, i.e., unspeci�ed preferences or demand functions. He
explores partial equilibrium with endogenous technology choice: innovative investments or R&D. One of his
models is the oligopoly of di�erentiated goods with free entry, posed in terms of arbitrary demand functions.
Vives studies the comparative statics with respect to the market size (and also to product substitutability
and entry cost). Under some �regularity condition� for pro�t concavity and certain restriction on the
demand shape, he shows that investments in productivity increase with the market size (see Proposition
2 in Vives (2008)). However, strategic interactions, typical in oligopoly, make this analysis cumbersome,
which prevents formulating clear necessary and su�cient conditions for the positive e�ect found, and
complicates the extensions.

Our goal is to enrich the theoretical explanations of these empirical regularities in R&D�through
extending Vives's approach to the monopolistic competition framework. The �rst reason for monopolistic
competition is future extension to trade, and its immediate trade interpretations. The second reason is to
get rid of strategic interactions (unimportant when �rms are numerous). Then the model becomes more

1On the other hand, Aghion et al. (2005) demonstrate the possibility of non-monotone (hump-shape) correlation between
competitiveness and innovations.
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tractable and we can show more e�ects than Vives, including even necessary and su�cient conditions for
certain market outcomes�in terms of some tractable conditions on utility functions. Notably, we compare
equilibria with social optimum, consider regulation, and consider an extension to heterogeneous �rms.

Our setting extends Dixit-Stiglitz-Krugman (Dixit and Stiglitz (1977), Krugman (1979)) monop-
olistic competition with unspeci�ed utility developed as in Zhelobodko et al. (2012)�towards variable
technologies as in Vives (2008). We argue that unspeci�ed preferences look more robust than any speci�c
form, especially CES utility, which has beenbroadly criticized (see e.g. Ottaviano et al. (2002), Behrens
and Murata (2007)).2 Importantly, CES speci�cation makes prices and outputs independent of the market
size, that prevents a meaningful modelling of endogenous technology. By contrast, our choice of a general
equilibrium model, instead of partial equilibrium, is not crucial for our results. They generally remain the
same in a quasilinear setting also, as we mention among the extensions.3

Speci�cally, we consider one-sector one-factor monopolistic competition in a closed economy, with
endogenous choice of technology in the diversi�ed sector. R&D or other technological choice means that
higher investment (�xed cost) entails lower marginal cost, which is presented by a non-speci�ed decreasing
�investment function� called also �innovation function�. The degree of its convexity becomes a criterion for
some outcomes. Similarly, on the consumer side what matters for outcomes is the degree of the concavity
of the non-speci�ed elementary utility function. Namely, we use the Arrow-Pratt measure of concavity,
known as relative risk aversion, called �relative love for variety� (RLV) in our context, and measuring
also the elasticity of the inverse demand. Under su�ciently �at demands, called �sub-convex� in Mrázová
and Neary (2012) both (absolute value of) demand elasticity and elasticity of the inverse demand are
increasing. We call this case IED or �increasingly-elastic� demands. Instead, for �super-convex� demands
both elasticities decrease (DED case), while CES utility provides the borderline case�iso-elastic demand.

Our �ndings are focused on advantages or disadvantages of large markets for R&D investments.
We �rst study the impact of the market size on equilibrium prices, outputs, mass of �rms, and most
importantly�on investment in productivity. Rather comprehensive comparative statics is summarized in
Table 1 into three main patterns: increasing, constant, or decreasing demand elasticity.

Intuitively, our initial hypothesis was that when a �rm sells to a bigger population (like China), it
has always more incentives to invest in decreasing its variable cost, thus exploiting the economies of
scale. However, actual results show that such positive relation holds true only under increasing RLV
(i.e., decreasing elasticity of substitution, IED case). By contrast, in CES case RLV remains constant,
so investments do not change. In the third case, decreasing elasticity of demand (DED), we observe
counter-intuitive negative impact of market size on the investments.

The latter surprising prediction can be explained as follows. Under growing market more competitors
enter, then the demand decrease for each variety. In response, under super-convex demand each �rm
increases its price and decreases the output (see Zhelobodko et al. (2012) for similar prediction without
investments). Output being always positively related to cost-reducing investment, economies of scale
induce paradoxically declining investment�contradicting the aggregate stylized facts. This discrepancy
probably means that among industries super-convex demands are non-typical (or even absent), and have
been considered as not too realistic in Krugman (1979) and other papers.

Other equilibrium characteristics�prices and outputs�follow the same three patterns of Table 1.
Similarly to �xed technology case (Zhelobodko et al. (2012)), a bigger market pushes prices down under
increasing RLV (IED), makes them increase under DED, and does not a�ect prices under CES. Outputs
always move oppositely to prices, the mass of �rms always increases. Here the cost function plays smaller
role for classifying the market outcomes, yet, some subcases of our main three patterns relate to markup
and size of a purchase. Comparing our �ndings in Proposition 3 to Zhelobodko et al. (2012), we included
now the cases without di�erentiable producers' responses to the market size, which is quite realistic under

2�As a theorist, I'm not used to relying on particular functional forms for results. These are usually called `examples',
not `theorems'.� (Berliant (2006), page 108).

3General equilibrium like monopolistic competition appears more suitable for possible extensions to international trade,
because in trade income e�ects do matter.
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threshold e�ects in R&D investments; the responses are even discontinuous. This analysis requires the
Milgrom's �ordinal� technique of comparative statics instead of usual di�erentiation.

Concerning social (non-)optimality of equilibria, under our variable technology we �nd a similar opti-
mality criterion as in Dixit and Stiglitz (1977) (and as in Dhingra and Morrow (2011) who study optimality
in a heterogeneous industry). Namely, the only case of welfare-maximizing equilibrium is iso-elastic utility,
this feature holding globally only for CES. By contrast, increasing elasticity of utility (IEU case) induces
insu�cient competition, measured by the mass of �rms, and too big investment. Finally, decreasing elastic-
ity (DEU case) brings the opposite e�ect: excessive competition and insu�cient investment. In particular,
rather natural utility functions u(x) = (x+ a)ρ − aρ − bx show IED+DEU properties, and we extend this
property to all sums of power functions with natural coe�cients.

Such �natural� IED+DEU utilities always bring insu�cient outputs, similarly to constant-technology
�nding in Dixit and Stiglitz (1977). We extend this �nding and relate it to insu�cient R&D investments,
as in Dasgupta and Stiglitz (1980). However, this discrepancy is partially cured by the growing market,
which enhances investments, driving them closer to social optimum (which also increases, see Proposition
6). Thus, growing market drives equilibrium and social optimum closer to each other under those types
of demand that seem most plausible.4 This shows one more bene�t of markets integration (see similar
convergence in Dhingra and Morrow (2011) under �xed investments).

Our new topics include (i) threshold e�ect and non-smooth comparative static Proposition 3 (based on
Milgrom's approach); (ii) governmental regulation, (iii) multi-sector economy, and (iv) �rms' heterogeneity.

(i) The threshold e�ect means that we assume such investment function that allows our �rms to
�jump� abruptly from non-investing in R&D to a noticeable investment, in response to in�nitesimally
small increase in the market size, bypassing the stage of in�nitesimally small investment. It looks quite
realistic and we argue that this should be the case under most realistic innovation functions. However,
technically this realism costs something. We are forced to deal with pro�t functions that are not concave
globally (which is actually inevitable for modelling R&D, as we show), multiple equilibria, and comparative
statics avoiding di�erentiability, and even continuity, of equilibria responses to the market size. Luckily,
the technique from Milgrom and Roberts (1994) can cope with such situations.

(ii) When the market is not big enough for negligible discrepancy between the market equilibrium and
social optimum�what should the government do? Somewhat surprisingly for common sense, neither linear
taxation nor linear subsidizing revenue can help. The reason is that the equilibrium equation di�ers from
the optimum equation only in term of elasticities. Namely at equilibrium the elasticity of revenue equals
the elasticity of some �reduced-form� cost function, whereas at optimum the utility elasticity replaces the
revenue elasticity. So, to correct optimum, we should modify the revenue elasticity, which is impossible
by a linear transform; subsidizing or taxation should be nonlinear.

Another possible regulation can be on the cost side: subsidizing R&D in one or another form. This
topic is studied in our Section 6 together with the comparative statics w.r.t. the exogenous technological
progress. Additionally, we compare any two industries where the �rst have more concave elementary
utility, i.e., more love for variety. Naturally, it yields smaller �rms and consequently, smaller R&D.

(iii) An important extension is multiple industries interacting with each other under endogenous tech-
nology. This seems a very hard theoretical issue but actually under additive utilities it is not. We achieve
such extension (see similar �ndings under exogenous technology in Zhelobodko et al. (2010)).

(iv) The most important extension is the selection of the best producers by larger markets, that
means a heterogeneous model a'la Melitz (2003), but with endogenous technology and variable elasticity
of substitution. The main �nding, agreeing with the same conclusion in a �xed-technology heterogeneous
model Zhelobodko et al. (2012), is that in any IED market the cuto� increases, so the productivity of
the whole economy increases due to selection e�ect. Now the mechanism of such increase works through
investments in R&D. Additionally, we see that this selection turns out enforced by more active R&D in the
strongest �rms, who increase their R&D comparable to smaller markets, so stimulation of innovation works

4This angle of discussing the big-market bene�ts looks more appropriate than traditional IO question about growing or
decreasing R&D under expanding market.

7



in the same direction as selection. By contrast, under DED all these e�ects work oppositely, unfavorably
for productivity.

It should be explained that our result on positive e�ect of the market size on productivity of a hetero-
geneous industry looks rather similar to that in Melitz and Ottaviano (2008), and really similarly describes
the selection e�ect. However, the important di�erence is that Melitz-Ottavino model replaces the increas-
ing returns and �xed costs with the choke-price assumption, which directly selects the best �rms under
market expansion under any choke-price utilities. Instead, our approach is more traditional for monopo-
listic competition and links good or bad market selection to the IED or DED classes of preferences, that
may display or not the choke-price property (a �nite derivative at zero).

Section 3 presents the model. Section 4 includes comparative statics. Section 5 studies comparison
of equilibrium with social optimality, comparative statics of optimum, and regulation. Sections 6 and 7
show the impact of technological progress and discuss the inter-industry comparisons. Section 8 studies
multi-sector economy case. Section 9 studies heterogeneity. Section 10 concludes. Most proofs are in
Appendices A and B (Sections 11 and 12). Appendix C (Section 13) presents a table of all the notations
and their de�nitions.

3 One-sector economy with endogenous technology

We model now the closed economy with endogenous investments in technology, as in Vives (2008), but with
general equilibrium and monopolistic competition. Comparing our setting to the standard Dixit-Stiglitz
model (see Dixit and Stiglitz (1977)) with CES, we generalize their approach in two respects: we enable
investments in productivity and allow for general (unspeci�ed) elementary utility function.

Our economy exploits one production factor interpreted as labour. There is one sector using this labour
(though the same model can also describe a sector within a multi-sector economy, see Zhelobodko et al.
(2012)). There are two types of agents: big number L of identical consumers/workers and an endogenous
interval [0, N ] of identical �rms producing varieties of some �di�erentiated good.� Our goal is to show why
di�erent preferences for variety determine di�erent outcomes of competition.

3.1 Consumer

Each consumer maximizes her utility under the budget constraint through choosing an in�nite-dimensional
consumption vector (integrable function) X : [0, N ] → R+, where N is the endogenous mass of �rms or
the scope (the interval) of varieties. All consumers behave symmetrically, so the consumer's index is
redundant.5 As in Krugman (1979), Vives (1999) and Zhelobodko et al. (2012), the preferences are
described by unspeci�ed additive-separable utility function maximized under the budget constraint:6

max
X

ˆ N

0
u(xi)di, s.t.

ˆ N

0
pixidi ≤ w = 1. (1)

Here scalar xi is consumption of i-th variety by any consumer and X = (xi)i≤N . Further, pi is the price,
w ≡ 1 is the normalized wage and pro�ts are neglected, vanishing at the equilibrium.

5The assumption on identical consumers seems restrictive, but we argue that it replaces other typical heroic assumptions:
either CES utility or quasi-linear utility, both allowing for consumer's aggregation. Could the opposite assumption (hetero-
geneous consumers) change our main the results? No. Indeed, when a monopolist meets heterogeneous consumers, then,
naturally, the markup chosen would be determined by average demand and its elasticity increasing or decreasing. So, this
generalization amounts to reformulation of comparative statics in terms of the (average) demand characteristic r(x), instead
of RLV r(x) de�ned for utility. Of course, the model should change somewhat, allowing for vector-valued marginal utility
of income.

6This additively-separable utility class includes CES-function and CARA function from Behrens and Murata (2007) are
the special cases.
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Another version of our setting is an additive combination of several sectors with sub-utilities u1, u2,

so that U =

ˆ N1

0
u1(xi)di+

ˆ N2

0
u2(xi)di+ .... In this multi-sector version all our results remain true, but

except for �rms' masses, Nk, that behave somewhat di�erently. Below we stick to one-sector notation.
Assumption 1 (suitable u). The elementary utility function u(·) satis�es

u(0) = 0, u′(xi) > 0, u′′(xi) < 0,

i.e., it is everywhere increasing, strictly concave. For our results we need not specify restrictions like homo-
thety or CES. Instead, as in Krugman (1979), Vives (1999) and Zhelobodko et al. (2012), our classi�cation

of markets uses the Arrow-Pratt measure of concavity de�ned for any function g as rg(z) ≡ −
zg′′(z)

g′(z)
and

we require

ru(0) ≡ − lim
z→0

z · u′′(z)
u′(z)

∈ [0, 1), ru′(z) ≡ −
zu′′′(z)

u′′(z)
< 2 ∀z ∈ [0,∞). (2)

Thereby the demand concavity ru′ is restricted, that would guarantee global strict concavity of producer's
pro�t under constant costs, which could ensure equilibria symmetry and uniqueness (see Zhelobodko et
al. (2010) and our paragraph about uniqueness in Subsection 3.4 ). Additionally, we have restricted the
inverse-demand elasticity ru at zero, to guarantee equilibria existence. All these natural restrictions are
maintained throughout, as well as the following boundary conditions on the �elementary revenue� function
de�ned as Ru(z) ≡ zu′(z):

Ru(0) = 0, MR ≡ lim
z→+0

R′u(z) > 0, MR ≡ lim
z→∞

R′u(z) ≤ 0. (3)

The characteristic ru of utility is known as �relative risk aversion� in risk theory and is named �relative
love for variety� (RLV) in monopolistic competition (Zhelobodko et al. (2012)). Actually, the consumer's
program above is formally equivalent to the portfolio program. So, a well-known fact applies: concave
u results in balanced mixture of varieties, which becomes symmetric (xi = xj) under identical prices of
varieties. Under symmetry, function ru(z) = 1/σ(z) is the inverse to the elasticity of substitution among
varieties and serves as the elasticity of inverse demand for each variety (standardly). This explains its
important role for market outcomes. In particular, for CES utility u = xρ, RLV is constant: ru(z) ≡ 1−ρ.
Therefore under CES (i.e., iso-elastic demand) the equilibrium prices and outputs remain indi�erent to
the market size, that hides the links which we would like to uncover. In contrast, under increasingly-
elastic demand (IED) or decreasingly-elastic demand (DED) we are going to show opposite behavior of
investments.

Using our assumptions and the Lagrange multiplier λ, the �rst order condition (FOC) generates the
inverse demand function for i− th variety:

p(xi, λ) =
u′(xi)

λ
. (4)

Obviously, p decreases in consumption xi. Higher marginal utility of income λ also leads to a decrease
in demand and thereby the marginal utility of income λ becomes the only market statistic important for
producers, a sort of measure of the intensity of competition.

3.2 Producer

On the supply side, we standardly assume that each variety is produced by one �rm that produces a single
variety. However, unlike classical settings but like in Vives (2008), each producer chooses the technology
level. Namely, when spending f units of labour as �xed costs, the total costs of producing q units of output

9
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Figure 1: Sample innovation function c(f) = min{1.7, 0.1
(f+0.01)7/8

+ 0.1}, f0 = 0.032.

will amount to c (f) q + f units of labour. It is natural to assume a non-increasing bounded �innovation
function� c, which appears strictly convex where it strictly decreases:7

c(0) = cmax; lim
f→∞

c(f) ≥ c0 > 0; c′(f) < 0⇒ c′′(f) > 0.

It means that: (1) more expensive equipment would incur smaller marginal costs; (2) investment in
productivity shows decreasing productivity returns; (3) marginal cost cannot fade to zero: c ≥ c0 > 0.8

Similarly to c0 assumption, it is reasonable to assume minimal investment requirement f0 > 0 necessary
for any business, with or without R&D (this f0 makes function c truncated at some level cmax, see Fig.1).
Then R&D is the di�erence z = f − f0 between total investment f and this technological minimum.
Respectively, we call the equilibrium �R&D regime� when this di�erence z is positive. We further study
mainly the R&D regime, though possible abrupt switching between the two regimes becomes a new issue,
so far contemplated only in Mrázová and Neary (2012), called a �threshold e�ect.� This e�ect is not due
to the kink (point (f0, cmax) in Fig.1), this kink can be smoothed keeping the threshold. Realistically,
a threshold means that either zero or noticeable R&D investment maximizes pro�t, whereas investing a
penny is never pro�t-maximizing (locally non-concave pro�t).

Now, using the inverse demand function p(xs, λ) from (4), the pro�t maximization of s− th producer
can be formulated as9

πs (xs, fs, λ) = (p(xs, λ)− c(fs))Lxs − fs =

(
u′(xs)

λ
− c(fs)

)
Lxs − fs → max

xs≥0,fs≥f̂
.

Under continuum of producers, it is standard to prove that each producer s has a negligible e�ect on
the whole market, i.e. the Lagrange multiplier λ can be treated parametrically by each s. This Lagrange
multiplier is the natural aggregate market statistic: the bigger is the marginal utility of income λ, the lower
is the demand curve and therefore smaller is the pro�t. Thereby this λ is the �toughness of competition�
among the producers of di�erentiated goods, like a price index in standard Dixit-Stiglitz model (see
Zhelobodko et al. (2012)).

7We also call c(.) an investment function, because its inverse shows how much one should invest to arrive at some marginal
cost c.

8This assumption is needed for �nite maximum in pro�t maximization.
9Standardly, maximization of monopolistic pro�t w.r.t. price or quantity gives same results.
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Pro�t maximization w.r.t. supply x and investment f yields FOC:

u′′(xs)xs + u′(xs)

λ
− c(fs) = 0, (5)

c′(fs)Lxs + 1 = 0. (6)

These equations are valid under second order condition (SOC), that must hold at least locally. Negative
semi-de�niteness of the Hessian matrix at the R&D regime amounts to two conditions:

−
(
u′′′(xs)xs + 2u′′(xs)

)
> 0⇔ ru′(xs) < 2, (7)

−
(
u′′′(xs)xs + 2u′′(xs)

)
c′′(fs)xs > λ

(
c′(fs)

)2
, (8)

the latter being stronger than the former at R&D regime (c′ < 0, c′′ > 0), in the opposite regime only the
former applies (being assumed throughout).

For each producer the FOC conditions are the same. So, below we focus only on symmetric equilibria,
denoting xs = x, fs = f ∀s. Thereby, we bypass the delicate question of asymmetric equilibria with non-
concave pro�t, where each producer has two or more equivalent local maxima (see Gorn et al. (2012)).
Such equilibria are really possible in such models with a (realistic!) threshold. But luckily, only zero-
measure set of parameters L brings related argmaxima multiplicity, as we shall explain. We shall see that
with or without our minimal f0 assumption, the pro�t function is often globally-non-concave in such R&D
models. This fact precludes imposing SOC (8) globally for all λ, it is an �impossible assumption�.

3.3 Equilibrium

Entry. Standardly, we assume that �rms freely enter the market while their pro�t remains positive, which
implies a zero-pro�t condition

u′(x)

λ
− c(f) =

f

Lx
. (9)

Labour balance. Under symmetric equilibrium (fi = f, xi = x) labour market clearing means

ˆ N

0
(c(fi)xiL+ fi) di = N (c(f)xL+ f) = L. (10)

Summarizing, we de�ne symmetric equilibrium as a bundle (x∗, p∗, λ∗, f∗, N∗) satisfying:
1) utility maximization (4);
2) pro�t maximization (5)-(6) and (7)-(8);
3) free entry condition (9) and labour balance (10).
It is straightforward to exclude λ, and rewrite the equilibrium equations in terms of the Arrow-Pratt

measure of concavity rg(x):10

Proposition 1. Equilibrium consumption/investment couple (x∗, f∗) in one-sector economy with positive
R&D (f > f0) is the solution to the system

1− ru (x) =
Lxc(f)

f + Lxc(f)
, (11)

10Main assumptions 1 − ru(x) > 0, 2 − ru′(x) > 0 and (2− ru′(x)) rc(f) > 1 are used in our proofs only locally. These
assumptions are rather standard for any monopolist. The condition 1 − ru(x) > 0 must be ful�lled in equilibrium: the
monopolist charges the price on the elastic part of the demand curve. Pro�t concavity condition 2 − ru′(x) > 0 guarantees
that FOC relates to a local maximum, not minimum. Finally, (2− ru′(x)) rc(f) > 1 is also the concavity condition, but for
endogenous investments in technology.
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(1− rln c(f) + rc(f)) (1− ru(x)) = 1, (12)

under the conditions
ru (x) < 1, (2− ru′ (x)) rc (f) > 1. (13)

Corresponding equilibrium mass of �rms N∗ is determined by equation

N =
L

c(f)xL+ f
, (14)

price p∗is determined by

p =
c(f)

1− ru(x)
, (15)

and markup
p∗ − c(f∗)

p∗
is found from

p∗ − c(f∗)
p∗

= ru(x∗) =
N∗f∗

L
. (16)

Under zero R&D (f = f0) the equilibrium is determined by the same equations without (12) and with
f = f0.

3.4 Model reformulation: non-linear cost, thresholds and changing regimes11

Here we are going to reduce our model with the endogenous choice of technology�to a model with non-
linear �xed technology, like in Zhelobodko et al. (2012).

Namely, in Zhelobodko et al. (2012) a �rm producing output q = x ·L > 0 with �xed cost f = f0 faces
total non-linear total cost C(q) = V (q) + f . Total cost was supposed convex in several propositions but
in our paper it will not be the case. In our context investment f becomes an optimization variable and
variable cost V becomes a function of q and f . Then, the �rm's optimization can be decomposed into
stages:

(1) for any given q, we �nd investment f̌(q) that minimizes costs:

f̌(q) ≡ arg min
f≥f̂

[f + qc(f)],

(2) we maximize pro�t w.r.t. q using f̌(q).
Thereby we can de�ne the total cost depending only on q as

C(q) ≡ V (q, f̌(q)) + f̌(q) = c
(
f̌(q)

)
· q + f̌(q).

How this function behaves? It is easy to show that optimal investment increases w.r.t. output in R&D
regime (f̌ ′ > 0), which under assumption c′ < 0 yields decreasing marginal cost:

(
f̌(q)

)′
> 0 ∀q : f̌(q)− f0 > 0⇒ d

dq
c
(
f̌(q)

)
< 0.

Further, using the envelope theorem, the derivative of total cost C is exactly the marginal cost c(·), thereby
the second derivative of total cost C is negative in R&D regime and bounded:

C′(q) = c
(
f̌(q)

)
, C′′(q) = c′

(
f̌(q)

)
· f̌ ′(q) < 0.

11Mathieu Parenti did participate in converting our problem to non-linear costs and proposed a promising idea to apply
similar conversion to any additional tool optimized by a �rm together with output: advertising, quality, or anything else.
Then the theorems from Zhelobodko et al. (2012) become applicable to all these topics.
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Figure 2: The main equilibrium equation and its prerequisite MR = MC (scaled).

Thus we have arrived at
Remark 1 (Locally concave cost). Total cost function C = C(q) (that includes optimal investment)

is strictly concave w.r.t. output under R&D regime (f̌(q) > f0).
Concavity is a simple but important result: in contrast with convex costs typical in IO, situations with

additional technological parameter�R&D investment�necessarily generate concave cost (similar outcome
occurs under advertising and other similar investments). This fact is unpleasant, possibly undermining
global pro�t concavity. So, we necessarily step into the shaky grounds of possibly multiple pro�t argmax-
ima. Convex cost was typically assumed away in standard oligopoly theory, not only for technical reasons.
Indeed, under non-di�erentiated good, concave cost would necessarily lead to natural monopoly. Even
under our di�erentiated good, such market structure (pure monopoly) can be the outcome instead of
monopolistic competition, as we argue below.

Main equilibrium equation. Reduction of our investment model to non-linear cost model simpli�es
the analysis as follows. We divide the producer's FOC by the free-entry condition R(q/L) = C(q) to get
rid of λ. Then we arrive at the main equilibrium equation (similar to Zhelobodko et al. (2012) and to our
equation (11)) that connects the elasticity of per-purchase revenue R(x) ≡ x · u′(x)/λ and the total cost
elasticity as

ER(q/L) ≡ 1− ru(q/L) = EC(q). (17)

Such equilibrium condition is illustrated by the right panel in Fig.2, and one can see the kink marking the
switch from non-investing regime to R&D regime. The same kink is present also in the left panel, which

shows related Marginal Revenue (MR) d
dq [q u

′(q/L)
λ ] and Marginal Cost (MC) C′(q) (here the utility is

u = x2/3 − x/3 and the cost function is the same as in Fig.1).
We take the population size L1 = 1.49, then the right panel in Fig.2 shows two free-entry equilibria

q0 ≈ 0.030, q1 ≈ 0.060, denoting the output levels where the two curves ER(q/L), EC(q) intersect. We have
adjusted the data so that q1 coincides with q0 ≈ 0.030, the switching point of the regimes, to show that
such degenerate outcome may happen at some Lk. More typically, there are three intersections and the
middle one means the pro�t minimum (not an equilibrium). After �nding any solution qk, one can derive
related equilibrium competitive pressure λk(Lk), such that R′(qk/Lk)/λk = C′(qk) in the left panel.

Further, trying a larger population L2 = 2.5 > L1, we see that new equilibrium q2 ≈ 0.129 > q1

is bigger, because ER(·) is stretched to the right, that makes it higher under the sub-convex demand
plotted (unlike DED case). The same transformation makes the marginal-revenue curve R′ in the left
panel simultaneously wider (L ↑) and lower (λ ↑). Here the new curve crosses MC at a new point q2 > q1

(coincidence q2 = q1 will be shown only under CES preferences). Such increase in L may generally yield
switching from non-R&D to R&D regime, which is the case in our picture, if q0 were an equilibrium. In
such cases, the transition of equilibrium involves some discontinuity in q; the switching of the regimes is
abrupt. We have observed such discontinuity (threshold e�ect) for many preferences/costs which are not
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unnatural, not only those in Fig.2.12

Equilibrium existence becomes more clear now: an equilibrium q does exist if and only if loci
ER(q/L), EC(q) intersect. In particular, when the demand has both horizontal and vertical intercepts (for
instance, u(x) = (x+ a)ρ − aρ − bx), the revenue elasticity ER(q/L) must go from 1 to 0. This guarantees
existence under any costs because elasticity EC(q) anyway goes from zero to some positive value, under
assumption f0 > 0. Arguing in this way, we get the following existence theorem.

Remark 2. When the demand has both vertical intercept u′(0) <∞ and horizontal intercept ∃x|u′(x) =
0, an equilibrium exists under any costs. Alternatively, when variable cost V (q) tends to be approximately
linear at in�nity, an equilibrium exists under any preferences.

More generally, we will show that an equilibrium exists whenever at the boundaries of [0,∞) the
elasticities of costs and revenue are bounded as

EC ≡ lim
q→0
EC(q) = 0, EC ≡ lim

q→∞
EC(q) > ER ≡ lim

z→∞
ER(z). (18)

Thus, in these two broad and realistic cases, existence is guaranteed. In the more general case the
joint boundary restriction on cost and preferences is less intuitive: it ensures non-positive or decreasing
pro�t when output goes to zero or to in�nity (see Zhelobodko et al. (2012) for an alternative conditions
of equilibrium existence). Without such a condition, under some reasonable kinds of preferences/costs
our monopolistic competition equilibrium really does not exist. Such cases indeed mean impossibility of
monopolistic competition. For instance, conventional iso-elastic utility u(x) = xρ cannot be combined
with iso-elastic marginal cost c(f) = f−α, f > f0. Under such combination, each �rm tries to increase
output to in�nity until arriving at an oligopoly (which restricts the demand expectations by strategic
interactions) or even monopoly. Thus, the existence restriction on demands/costs is not technical; the
named boundary condition really distinguishes the markets suitable for monopolistic competition industry
structure from others (CES functions being non-suitable). Decrease in marginal cost plays an unimportant
role for existence, the positive limit of MC at in�nity is important.

Equilibrium uniqueness. By contrast with existence, equilibrium uniqueness is more seriously
undermined by costs that are not globally convex. Like in Fig.2, many realistic preferences generate two
or more intersections of ER(q/L), EC(q), even under IED assumption (decreasing ER(q/L)). Of course, only
intersections from-above (ER(q/L) > EC(q)) relate to pro�t maxima, and to become multiple equilibria
they must bring the same pro�t, but it does happen. Moreover, we easily can �nd parameters u, L
generating multiple equilibria for any locally super-convex investment function c(.), as we show soon. To
exclude equilibria multiplicity, one can try a restriction on the pro�t-concavity condition like

R′′(q/L)/λ−C′′(q) < 0 (19)

but it is not very helpful, because of parameters L, λ. Indeed, using our �nding C′′(q) < 0, we can prove
that for any demand schedule and any q there exist a couple (L, λ) violating this condition (this can be
understood from the left panel in Fig.2 or just from varying λ). I.e., assumption (19) imposed everywhere
would be vacuous. It is better to require similar thing only for equilibrium magnitudes λ(L).

More practically, in terms of elasticities the necessary and su�cient condition for excluding multiple
equilibria is �no-crossing-from-below� at all equilibria:

∀L, q : ER(q/L) = EC(q)⇒ ∂

∂q
[ER(q/L)− EC(q)] < 0,

12The smaller is the value f0 truncating the investment function c, the broader is the �jump�. In the limiting case f0 ≈ 0,
this jump is performed between the zero production q0 ≈ 0 and some big production q1, su�cient to justify some investments.
In other words, our truncation of c(·) with the help of f0 is not the cause of discontinuous comparative statics and multiple
equilibria, it plays just the opposite role.
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which is not an intuitive assumption. More understandable condition su�cient under increasingly-elastic
or sub-convex demands (E ′R = −r′u < 0) is E ′C(q) > 0. To express this in primitives, we combine the FOC
(f̌ : dc

df · q = −1) with the elasticity de�nition as

EC(q) =
c
(
f̌(q)

)
q

f̌(q) + c
(
f̌(q)

)
q

=
1

1 +
f̌(q)

qc
(
f̌(q)

) =
1

1− Ec
(
f̌(q)

) .
The left-hand side increases whenever the right-hand side does (recall

(
f̌(q)

)′
> 0), so, we get

Remark 3. Under IED, increasingly-elastic investment function (c(·) : E ′c(f) > 0 ∀f > f0) is su�cient
for equilibrium uniqueness and continuity of comparative statics.

The above statement that comparative statics w.r.t. L shows no discontinuities�is understandable
from studying the main equilibrium equation 1 − ru(q/L) = EC(q); the unique solution responds contin-
uously to continuous change in L. The restriction E ′c (·) > 0 becomes also necessary, when we want a
uniqueness condition working under all sub-convex demands (IED) and iso-elastic demands.13

In the opposite case, without uniqueness, there typically arises the threshold e�ect : a big jump of
equilibrium in response to in�nitesimally small changes in L. In particular, our (not unnatural) example
in Fig.2 shows such jump.

To exclude such jumps, one can look for investment functions increasingly-elastic everywhere. To this
end, one should use our cost truncation f0 > 0. Otherwise (when we stick to natural restriction c′(0) <∞)

the elasticity Ec = fc′(f)
c(f) = 0 at f = 0, remaining negative everywhere else, i.e., the elasticity decreases at

least at 0.
Thus, it is our truncation of c(.) that helps in some cases to provide increasingly-elastic c and thereby

global (for all L) uniqueness of equilibria. Sometimes we shall use this assumption, to avoid formulating
multiple asymmetric equilibria arising at the moments of jumps. In other cases, we focus mainly on
comparing symmetric equilibria before and after the jump, without the jump itself.14

These preliminaries and pictures explain the nature of our main results in the next section. When the
equilibrium behaves continuously and smoothly, our results follow from totally di�erentiating the main
equation w.r.t. L. More generally, even under switching R&D/non-R&D regimes, the direction of changes
can be found through a technique avoiding di�erentiability.

4 Equilibrium comparative statics: impact of market size

Our primary goal is to study the impact on productivity induced by the increasing market size measured
by population L. This increase can be interpreted as markets integration or population growth, or com-
parison between cities di�erent in size. Indeed, in proving below certain signs of changes in response to
in�nitesimally small increase in the market size, we thereby describe comparisons between �nitely di�erent
cities also (by continuity). In particular, we start now discussing changes in all equilibrium variables: price
p, �rm size Lx, mass of �rms N , investment of each �rm f , and total investments in the economy (Nf).
Technically, our equilibrium equations determine (x, f,N) as an implicit function of L.

Market size impact under smooth reactions. Before turning to di�cult cases, �rst we consider
the case of unique equilibrium and R&D regime at the point studied. We apply total di�erentiation and
rearrangements as in Zhelobodko et al. (2012) to obtain the elasticities of main variables in terms of the
concavity of the basic functions and �nd the elasticities' signs (the proofs are in Appendix B). These signs
classify all market outcomes into three patterns and some sub-patterns according to increasing/decreasing
concavity measure ru(x) (increasing elasticity of demand � IED or decreasing elasticity of demand � DED)
and to concavity of ln c.

13Indeed, without E ′c (·) > 0 one can �nd an iso-elastic demand u′(x) = ρxρ−1, i.e., constant ER ≡ ρ which crosses EC twice
or thrice. Then all IED demands su�ciently close to this u′(x) will also display multiple equilibria.

14See Gorn et al. (2012) for comprehensive study of asymmetry without investments.
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Proposition 2. Under unique equilibrium displaying the R&D regime (f > f0), elasticities E∗ of the
equilibrium variables w.r.t. market size L in homogenous economy can be expressed in terms of concavity
r∗ of basic utility and cost functions as:

Ex =
(1− rln c) (1− ru)

(2− ru′) rc − 1
(20)

ELx =
rcr
′
ux

((2− ru′) rc − 1) ru
(21)

Ef =
r′ux

((2− ru′) rc − 1) ru
(22)

ENf =
(1− rln c)

2 (1− ru)2

((2− ru′) rc − 1) rc
+

1

rc
+ ru (23)

EN = ru −
(1− rln c) (1− ru)2

(2− ru′) rc − 1
= 1− rcr

′
ux (1− ru)

((2− ru′) rc − 1) ru
(24)

Ep = − rcr
′
ux

(2− ru′) rc − 1
(25)

E p−c
p

=
(1− ru) (1− rln c) r

′
ux

((2− ru′) rc − 1) ru
(26)

and the elasticities' signs/magnitudes can be classi�ed as in Table 1:

Utility patterns: DED CED IED

L-elasticities r′u < 0 r′u = 0 r′u > 0
of: rln c ≤ 1 rln c > 1 rln c 6= 1 rln c > 1 rln c = 1 rln c < 1

purchase size Ex 6 ∃ < −1 = −1 ∈ (−1; 0) = 0 > 0

output ELx 6 ∃ < 0 = 0 ∈ (0; 1) = 1 > 1

�rm's investment Ef 6 ∃ < 0 = 0 > 0 ∈ (0; 1) > 0

gross investments ENf 6 ∃ > 1 = 1 ∈ (0; 1) = 1 > 1

mass of �rms EN 6 ∃ > 1 = 1 ∈ (0, 1) = ru ∈ (0, 1) < 1

price Ep = −ELx · ru 6 ∃ > 0 = 0 < 0 = −ru ∈ (−1, 0) < 0

markup E p−c
p

= ENf
L

6 ∃ > 0 = 0 < 0 = 0 > 0

In Table 1, Ex ≡ L·dx∗
x·dL is the elasticity of equilibrium individual consumption of each variety, Ef - the

elasticity of investment per �rm, EN - the elasticity of mass of �rms, ELx - the elasticity of total output
of one variety, ENf - the elasticity of total investment, Ep - the elasticity of price, E p−c

p
- the elasticity of

mark-up.15

Discussion. Commenting, we �rst say that generally these results remind conclusions of Proposition
2 in Vives (2008) obtained for oligopolistic model (related plausible case and important result is colored
red in Table 1). However, our table shows in more detail the in�uence of market size on all variables;
Vives mainly focused on investments. Additionally, instead of only the increasing investment case, we �nd
as much as �ve di�erent patterns of equilibria responses to the market size. For increasing/decreasing
investments, the utility characteristic r′u becomes the determining criterion. Namely, standard CES case

15In Table 1 the �rst column [r′u < 0, rln c ≤ 1] was proved to be empty; equilibria here do not exist. We also do not
mention the case r′u = 0, rln c = 1 where equilibria are indeterminate. Existence of equilibria is stated above. Moreover,
numerical examples for the middle columns are already constructed.
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(iso-elastic demand) is the borderline between markets with increasing (IED) or decreasing (DED) elas-
ticity of demand. Main �nding is that the DED class shows decreasing investments, whereas under IED,
�rms' investments increase in response to growing market. Additionally, the investment is always posi-
tively correlated with output which has clear interpretation: bigger output motivates higher cost-reducing
investment. More intriguing is that each �rm's larger output is not guaranteed for larger market. Why?

The explanation includes prices. They respond to the market size in the same way as under exogenous
technology (f, c) studied in Zhelobodko et al. (2010). Our prices also decrease under IED preferences
(naturally), but increase under DED preferences. To explain the latter surprising e�ect, recall what we
know from classical model of monopoly: when the demand decreases, a monopolist can charge either lower
or higher price, depending upon the demand elasticity. Intuitively, the market adjustment to growing
market works like this: in all cases the �rst step is the increase in the incumbents' pro�ts. Then extra
pro�ts invite new �rms into the industry and number, N , of varieties increases. This growing competition
pushes the marginal utility of income λ up and the inverse demand function is shifted down by the
growing denominator λ. This shift, under very convex demand (DED) pushes the price up (unlike IED
case), sharply decreasing the quantity x. At the next step, this high price and small quantity of the
incumbents invites new �rms and pushes the mass of �rms N even further upward. This positive feedback
makes the elasticity of N bigger than 1. Thus, decrease of both output Lx and investment f happens
under DED because the mass of �rms grows too fast. It is the excessive competition that makes the output
shrink, outweighing the market-size motive to invest in marginal productivity.16 In contrast, under r′u > 0
(IED) the slow growth of N makes output Lx increasing, that motivates more investment in productivity.

Thus, price and output behavior found in Zhelobodko et al. (2010) generally remains valid under our
endogenous technology also, though costs c and f change. Consumption and the mass of �rms behave in
a slightly new fashion only under r′u > 0, rln c < 1.

In contrast to utility, the curvature of the cost function becomes a criterion only for increasing/decreasing
individual consumption of each variety and for markup M = p−c

p . Su�ciently big elasticity of cost to in-
vestment expressed in condition rln c(f) > 1 makes the individual consumption decreasing, otherwise it
goes up.

Market size impact under non-smooth reactions. Now we turn to study the case of switching
regimes, that forces us to avoid derivatives (see Fig.2). For this purpose, we apply some lemmas from
Appendix A, which are the modi�ed versions of the �new� comparative statics theorems from Milgrom
and Roberts (1994), Milgrom and Shanon (1994), Milgrom and Segal (2002). Thus we immediately
obtain an analogue of previous Proposition 2, but now without di�erentiation and even without continuity
(enabling jumps).

Proposition 3. Assume that the market size L increases from some magnitude L1 to some L2 > L1

under boundary conditions (18). Then related equilibrium outputs q1 = q(L1), q2 = q(L2) and investments
f1 = f(L1), f2 = f(L2) exist in both situations. Moreover:

(i) Under IED (sub-convex demand, i.e., r′u(q/L) > 0 on interval [q1/L1, q2/L2]) the new magnitudes
satisfy inequalities

q2 > q1, f2 ≥ f1, [f2 > f0 ⇒ f2 > f1],

i.e., the output increases, the R&D investment (f − f0) also increases when positive (and anyway non-
decreases). Under DED, the impact is the opposite: q2 < q1, f2 ≤ f1, [f1 > f0 ⇒ f2 < f1].

(ii) The equilibrium prices change in the opposite direction to quantities (qi > qj ⇒ pi < pj).
(iii) The equilibrium intensity of competition λ and �rms' mass N both increase:

λ2 > λ1, N2 > N1.

16Nevertheless, total economy investmentNf always grows because growing mass of �rms dominates even when f decreases.
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Commenting, we would say that equilibria discontinuity does not change the direction of changes in
output and R&D investments induced by the market size. Similarly, a stone sliding from a hill can make
a jump which does not change the main direction - down. However, economically such jump should look
as an abrupt switch from zero R&D to noticeable R&D in response to gradual market changes. Such
evolution (or revolution, catastrophe) rather naturally bypasses the stage of in�nitesimally small R&D.
When applied to heterogeneous �rms, this idea would mean that there should be a gap between a group
of �rms applying R&D and those who do not apply it.

In our subsequent propositions we shall only refer to R&D regime, without allowing for jumps, which
have not been studied su�ciently.

So far, our main conclusion is that under IED (supposed a realistic case by Krugman (1979), and
others) a bigger market is favorable for innovations and productivity. But is it thereby favorable for
welfare? Not necessarily, as the next section shows.

5 Equilibrium versus social optimum, regulation

Relation between market equilibrium and social optimality is a traditional question since Dixit and Stiglitz
(1977); the mass of �rms under rather realistic utilities was found excessive, so, outputs were insu�cient.
Their results were extended to heterogeneous �rms in Dhingra and Morrow (2011). Our extension considers
a di�erent direction - to variable technology.

5.1 Social non-optimality of equilibrium

We start this topic with de�ning social optimality. Under homogeneous consumers it amounts to con-
sumer's gross utility, obtained when social planner optimizes all variables under labor balance only (�rst-
best solution). So, assuming symmetric solution (naturally), optimality means that xopt, fopt and Nopt

are the solution to optimization problemNu(x)→ max
N,x,f

N(c(f)xL+ f) = L

By expressing N from the labor balance and substituting, we get the simpler formulation

Lu(x)

c(f)xL+ f
→ max

x,f

and come to following characterization of �rst- and second-order conditions.

Proposition 4. At social optimum, FOC isrlnu − ru =
cxL

cxL+ f
c′xL = −1

(27)

while SOC is
Ec + rurc ≡ rln c − (1− ru) rc > 0. (28)

Moreover,
(1− Ec) Eu ≡ (1− rln c + rc) (rlnu − ru) = 1. (29)

Now we can compare this characterization with the equilibrium FOC obtained earlier:1− ru =
cxL

cxL+ f
c′xL = −1
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We see that equilibrium is optimal if and only if rlnu = 1 that holds true under u = xρ, i.e., CES utility
that has constant elasticity Eu ≡ xu′

u = ρ. The same conclusion by Dixit and Stiglitz (1977) remains true
in our setting with variable investments. Additionally, we would like to know the direction of departure
from optimum. The next proposition contains such detailed comparison between optimal consumption
(xo) and equilibrium consumption (x∗), optimal investment (fo) and equilibrium investment (f∗), optimal
mass of �rms (No) and equilibrium mass of �rms (N∗).

Proposition 5. Optimal consumption, investment, mass of �rms can be bigger or smaller than related
equilibrium magnitudes - depending upon increasing (IEU) or decreasing (DEU) elasticity Eu of utility:

IEU: E ′u > 0⇔ rlnu < 1 E ′u = 0 DEU: E ′u < 0

purchase size xo < x∗ xo = x∗ xo > x∗

investment fo < f∗ fo = f∗ fo > f∗

mass of �rms No > N∗ No = N∗ No < N∗

Further, optimal total industry investment (Nf)o = No · fo is compared with equilibrium total investment
(Nf)∗ = N∗ · f∗, according to three di�erent patterns:

(1− rlnu) · (1− rln c) < 0 (1− rlnu) · (1− rln c) = 0 (1− rlnu) · (1− rln c) > 0

(Nf)opt > (Nf)∗ (Nf)opt = (Nf)∗ (Nf)opt < (Nf)∗

Commenting the upper table, we should say that 1 − rlnu is positive when utility elasticity Eu(x) =
xu′(x)/u(x) increases in consumption. Then variety at equilibrium (the mass of �rms) exceeds the optimal
one and naturally, the consumption of each brand appears too small (under the opposite assumption we
see the opposite departure from optimality). More importantly (that is why we mark it by red), under
DEU preferences, each �rm' investment in R&D is too small because the number of �rms is excessive
relative to socially-optimal one.

These DEU preferences are supposed realistic in Dixit and Stiglitz (1977), similarly bringing insu�cient
output and excessive number of �rms (under exogenous technology, see also Dhingra and Morrow (2011)).
Also, insu�cient R&D investments is supported (in di�erent, oligopoly, setting) in Dasgupta and Stiglitz
(1980). We bring together these early insights in a uni�ed framework.

Here, in contrast with previous section, IED and DED properties of preferences play no role, though
CES is again the borderline between the two main patterns: IEU and DEU cases. An example of IED but
DEU utility is the simple modi�cation of CES utility: u = (x+ a)ρ− aρ (more speci�c case IED but DEU
is u = xρ − bx, b > 0).

The lower table says that total investment in market economy (Nf) is lower than socially optimal
when elasticities of utility and cost display opposite monotonicity; total investment is bigger than needed
when both elasticities increase or both decrease.

It is not easy to give economic interpretation of this necessary and su�cient conditions. We can only
note that without studying the market there is no ad hoc rationale for fostering or hampering competition
of varieties, and possibility of R&D investments does not change this conclusion.

5.2 Comparative statics of optimum and convergence with equilibrium

Now we study comparative statics of optimum w.r.t. market size L as we did with market equilibrium.

Proposition 6. At social optimum the elasticities of consumption xo, investment fo and mass of �rms
No w.r.t. market size L are

Ex = −(1− rln c) EcEu
Ec + rurc

, ELx = −(1− rlnu) rc
Ec + rurc

= 1− (1− rln c) EcEu
Ec + rurc

,
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Ef = − 1− rlnu

Ec + rurc
, ENf =1− (1− rlnu) (1− rln c) Eu

Ec + rurc
,

EN =1 +
(1− rlnu) rcEu
Ec + rurc

=

(
(1− rln c) Eu
Ec + rurc

− 1

)
EuEc

The signs of these elasticities can be divided into several patterns:

IEU: E ′u > 0 CEU DEU:E ′u < 0

⇔ rlnu < 1 rlnu = 1 ⇔ rlnu > 1

rln c ≤ 1 rln c > 1 rln c 6= 1 rln c > 1 rln c = 1 rln c < 1

Exo 6 ∃ < 0 = −1 < 0 = 0 > 0

ELxo 6 ∃ < 0 = 0 ∈ (0; 1) = 1 > 1

Efo 6 ∃ < 0 = 0 > 0 = Eu ∈ (0; 1) > 0

ENofo 6 ∃ > 1 = 1 ∈ (0; 1) = 1 > 1

ENo 6 ∃ > 1 = 1 ∈ (0; 1) = 1− Eu ∈ (0; 1) < 1

Here, we note that behavior of optimal investment follows three patterns, like equilibria, but now they
are governed by IEU, CEU and DEU cases of preferences instead of IED, CES and DED. As in Table
1, we mark by red here the most �realistic� case for discussing innovations. This case is the IED+DEU
class of utility functions. It is easy to prove that IED+DEU class includes, in particular, a sub-class of all
�realistic� sums of power functions like

u(x) =
∑
i

ai ((x+ di)
ρi − dρii )−

∑
i

bix
ηi : ai > 0, bi > 0, di > 0, ηi ≥ 1, ρi ∈ (0, 1). (30)

We call such coe�cients ai, bi, di, ηi, ρi �realistic�, because they generate decreasing demand functions and
concave pro�t functions displaying �nite maximum. This sub-class includes AHARA utilities: u(x) =
xρ − bx, u = (x + d)ρ − dρ, quadratic utility u(x) = x − ax2, etc. We suppose that, in spirit of Taylor
decomposition, many realistic IED+DEU demands can be tightly approximated by such sums of power
functions.

The IED+DEU class brings natural equilibria e�ects that agree with the stylized facts: equilibrium
innovations increase, remaining lower than optimal ones (see Proposition 5). However, socially-optimal
innovations also increase with the market size, and their convergence to equilibrium is not obvious. Yet, the
proposition below �nds when a growing market drives equilibrium and social optimum closer to each other
(another optimistic conclusion of this kind we see in Dhingra and Morrow (2011) under �xed investments).

Conjecture. Assume convex cost and utility u(·) of IED class (e.g., being the sum of powers as in (30).
Then ratio q∗/qo of equilibrium and optimum sizes increases monotonically up to the limit 1. Similar
monotone convergence to 1 takes place for equilibrium and optimum R&D investments f∗/fo.17

This conjecture can be interpreted as a technological bene�t of a bigger country, or market integration
under realistic IED situations: not only productivity increases, but it also converges to optimal produc-
tivity. Welfare under IED case also increases as we have seen. However, when the market is not extremely
big, there can be a room for governmental regulation.

5.3 Equilibrium versus optimum: governmental regulation

As we have seen, at the equilibrium the elasticity of revenue equals the elasticity of total cost C(q)
(including the sub-optimized f(q)), i.e,

ER(q) = 1− ru(x) = EC(q) ≡ xL · C
′(xL)

C(xL)
.

17Similar convergence one can �nd between the equilibrium/optimal masses of �rms N̄/Ň .
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Only the left-hand side of this equilibrium condition di�ers from our social optimality condition:

Eu(x) = EC(q).

So, the natural idea for Pigouvian governmental regulation (taxing or subsidizing �rms) would be to modify
the �rm's revenue in such a way that it would have the same elasticity as the consumer's utility.

To expand this idea, we note that it necessarily means some non-linear taxation, because linear taxation
cannot modify the revenue elasticity (convexity). Namely, we are going to argue in favor of regressive
taxation. Mathematically, we would like to �nd such monotone transform G(R, x) of revenue (maybe,
dependent on output), that everywhere, or at least in the zone of optima, the modi�ed �rm's revenue
R̃(x) = G(R(x), x) keeps the same elasticity as the consumer's utility:

ER̃(x) = Eu(x).

This does not necessarily mean R̃(x) = u(x), because linear transforms of G are irrelevant, there is
some freedom, but not too much. The reason is that we do not allow for cross-subsidization (we abstain
from the Ramsey's problem of minimizing inevitable deadweight losses across di�erent industries through
subsidization). We remain instead on the same grounds as our second-best social optimum: self-�nancing
industry. This means imposing additional restriction

R̃(x) = G(R(x), x) = R(x).

We assume that only the revenue (not pro�t) can be taxed, that the government somehow knows the
shape of the demand. Let us look on two �extreme� examples of such regulation in these circumstances.

Regulation example 1. Under CES utility u(x) = xρ, the elasticities of utility and revenue coincide
everywhere:

Eu(x) = ρ = ER(q) = 1− ru(x).

Thus, as well-known and con�rmed by these formulae, an industry with CES utility (with iso-elastic
demand) shows optimal equilibrium output, optimal innovation, and needs no regulation.

Regulation example 2. Previous example displays unrealistically convex demand, and the gov-
ernment need not stimulate innovations. Consider now a particular case of IED+DEU class of �re-
alistic� demands: very �at (linear) demand generated by a quadratic utility. It is parameterized as
u(x) = a(x − 1

2bx
2), u′(x) = a(1 − 1

bx), to make parameter a > 0 the choke-price and b > 0�the satia-

tion point. Then per-consumer marginal revenue is xu′(x) = a(x − 1
bx

2)/λ, its elasticity ER(x) =
2
b
x

(1− 1
b
x)

decreases in x twice faster than elasticity of utility Eu(x) =
1
b
x

(1− 1
b
x)
. Respectively, the government should

practice per-consumer quantity non-linear subsidy s(x) = a
2bx/λ to producer, that yields new producer's

price

p̃(x) = p(x) + s(x) = a(1− 1

2b
x)/λ.

As a result, the �rm would be motivated to increase its output exactly to the socially optimal magnitude.
To keep the industry self-�nancing, this subsidy should be covered by some appropriate lump-sum entry-
fee from each �rm starting the business (the fee is added to f0 in �rm's decisions). This regulation makes
Eu(x) = ER(q) and thereby reduces the mass of �rms from socially excessive level (see Proposition 5.1) to
a socially optimal one (the reduced entry modi�es the intensity of competition λ appropriately).

So far we cannot derive a general rule of such regulation more speci�c than ER̃(x) = Eu(x). Leaving
more detailed guidelines for regulation for further study, we only stress here that under realistic IED+DEU
preferences, driving an industry closer to social optimum necessarily requires regressive taxation or pro-
gressive subsidizing of output to reduce the number of �rms and increase their outputs and R&D.
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6 Exogenous cost shocks or cost subsidies

So far we considered only the impact of the market size. Instead, this section introduces the parameterized
cost function c = c(f, α) as a decreasing function of investment and of a parameter α, and we look how
the equilibrium change. The parameter can mean a technological innovation, or institutions improvement,
joining WTO, subsidies for R&D, etc.�all shocks that bring cost bene�ts to �rms through increasing the
e�ciency of cost-reducing investment (�process improvement�). We assume derivatives

∂c

∂f
< 0,

∂2c

∂f2
> 0,

∂c

∂α
< 0,

∂2c

∂f∂α
< 0,

that mean decreasing (w.r.t. investment and shock) convex sub-modular marginal cost.
The equilibrium concept (and therefore the system of equilibrium equations) remains the same as

under simpler costs c = c(f). Moreover, Proposition 1 characterizing the equilibrium remains valid, only
the notations rc, rln c mean now

rc := rc(f, α) := −

∂2c

∂f2
· f

∂c

∂f

> 0

rln c := rln c(f, α) := −

∂2 ln c

∂f2
· f

∂ ln c

∂f

.

We are interested in the elasticities of variables x, f , N , p w.r.t. α. To formulate the result, we
introduce notations of partial elasticities derived from the cost function

Ec/α :=
∂c

∂α
· α
c
< 0

Ec′f/α :=

∂

(
∂c

∂f

)
∂α

· α
∂c

∂f

=
∂2c

∂f∂α
· α
∂c

∂f

> 0

Proposition 7. Elasticities of the equilibrium variables w.r.t. cost-decreasing parameter α are

Ex/α =
Ec′f/α − (1− ru) rcEc/α

(2− ru′) rc − 1
> 0

Ef/α =
(2− ru′) Ec′f/α − (1− ru) Ec/α

(2− ru′) rc − 1
> 0

EN/α =
r′ux

ru
Ex/α − Ef/α

ENf/α = E p−c
p
/α =

r′ux

ru
Ex/α

Ep/α =
−ruEc′f/α + (1− ru) ((2− ru′) rc − 1 + rurc) Ec/α

(2− ru′) rc − 1
< 0

and their signs satisfy the following classi�cation:
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DED CES IED

r′u < 0 r′u = 0 r′u > 0

Ex/α > 0 > 0 > 0

Ef/α > 0 > 0 > 0

ENf/α = E p−c
p
/α < 0 = 0 > 0

EN/α < 0 < 0 ?

Ep/α < 0 < 0 < 0

We see here that both investment and consumption increase, price decreases in any case, whereas
markups and total investments of the economy behave di�erently in IED and DED cases. Comparing this
result with Proposition 2 we note that there the signs of elasticities of Lx, f , p w.r.t. L depend on the
sign of r′u while now in Proposition 7 similar elasticities w.r.t. α have unambiguous signs. In contrast,

increasing or decreasing Nf (and markup
p− c
p

) w.r.t. α now depends on the sign of r′u.

The natural conclusion from this section is that an exogenous cost-reducing shock (productivity in-
crease) should bring higher investment and lower prices. Less trivial idea is that cost-reducing governmental
regulation (say, tax reductions conditional on R&D investment) could push the equilibrium closer to social
optimum in IED situation that we suppose realistic.

7 Inter-industry comparisons

Let us introduce now a parameterized utility u = u (x, β) where β > 0 is a pro-concavity parameter (for
instance, u = x1−β). We have in mind inter-industry comparisons: ceteris paribus, should an industry with
higher love for variety have more investment or less investment than an industry with more substitutable
varieties. To formulate such general statement, we assume RLV to increase w.r.t. β:

ru (x, β1) < ru (x, β2) ∀x ∀β1 < β2, i.e.,
∂ru (x, β)

∂β
> 0, i.e., Eru/β (x, β) =

∂ru (x, β)

∂β
· β

ru (x, β)
> 0.

Proposition 8. Under increasing RLV, i.e., Eru/β (x, β) > 0, the equilibrium R&D investment decreases
w.r.t. RLV parameter β, having elasticity

Ef/β = −
Eru/β (x, β)

(2− ru′ (x, β)) · rc (f)− 1
< 0,

and all elasticities' signs satisfy the following classi�cation:

Increasing RLV: Eru/β (x, β) > 0

rln c < 1 rln c = 1 rln c > 1

Ef/β < 0 < 0 < 0

Eq/β = ELx/β = Ex/β < 0 < 0 < 0

EN/β > 0 > 0 > 0

Ep/β > 0 > 0 > 0

E p−c
p
/β = ENf

L
/β

= ENf/β < 0 = 0 > 0

We see that at the equilibrium, for increasing RLV case, the investments of each �rm as well as �rm's
size, decrease w.r.t. β, while prices of each variety as well as number of �rms, increase. As to markup,
total investments and total investments per capita, their behavior determines by the sign of (rln c − 1).
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The natural conclusion is that the more consumers love variety � the more �rms are in the industry
and the smaller is R&D investment.

8 Multi-sector economy

An important extension is multiple industries interacting with each other under endogenous technology.
We achieve it, expanding multi-industry setting from Zhelobodko et al. (2010) to endogenous technology
case. Like in this earlier work, it turns out that response of prices and outputs to market size is not
a�ected by other industries, only the mass of �rms change! This surprising result in essence follows from
each �rm's pro�t maximizing combined with free entry: only the interaction of �rms within the industry
matter for the optimal size of the �rm and optimal price policy, intra-industry relations do not matter.

Demand. Assume two industries (similarly, there can be n sectors, only the notation expands).
Keeping previous notations and assumptions, we add only an unspeci�ed upper-tier utility U : R2

+ → R
and additional industry with a lower-tier utility ũ, satisfying similar general assumptions but may be
with di�erent elasticity of substitution and DED/IED characteristics. Related consumptions x̃ and other
variables of the second industry will also have tilde accent.

Assuming symmetric equilibrium (which can be proven to be the case), now the consumer maximizes
utility in the form:

U(

ˆ N

0
u (xi) di,

ˆ Ñ

0
ũ (x̃i) di)→ max

x,x̃
s.t.

ˆ N

0
pixidi+

ˆ Ñ

0
p̃ix̃idi ≤ 1

Here U the upper-tier utility function is assumed thrice continuously di�erentiable, strictly concave, in-
creasing. It expresses the degree of substitution between our di�erentiated good (varieties) of the �rst sector
and the second one, which can be a numeraire in particular case: U(Nu (x) , Ñ ũ (x̃)) = U(Nu (x)) + x̃.

Taking the �rst-order conditions we derive the inverse demand for xi of the �rst sector as

p(xi, λ) =
u′(xi)U

′
1(X)

λ

where X = (
´ N

0 u (xi) di,
´ Ñ

0 ũ (x̃i) di) ∈ R2
+ is the vector of total utility from varieties and λ is the

Lagrange multiplier of the budget constraint. Similar is the inverse demand in the second sector:

p̃(x̃i, λ) =
u′(x̃i)U

′
2(X)

λ
.

On the supply side everything remains as before. Also, as before, each �rm reasonable treats the
general situation (X,λ) in the market parametrically, practically independent of its actions. Therefore,
after combining FOC and free entry, the equilibrium condition of each �rm boils down to the same equation
between the elasticity of revenue and elasticity of non-linear cost:

ER(q/L) ≡ 1− ru(q/L) = EC(q). (31)

Thus, applying the same argument as earlier, we arrive at
Remark. The behavior of outputs, investments and prices in each sector of the multi-sector economy

respond to the market size exactly as in Propositions 2 and 3, only the masses of �rms can show ambiguous
e�ects.

Thus, the same e�ects as before hold in the multi-sector economy, even the functions of price/output
elasticities w.r.t. the market size are the same. In particular, when one industry demonstrates IED and
another DED, simultaneously the �rst one decreases prices and increases R&D in response to the growing
market, whereas the second one demonstrates the opposite e�ects!

24



9 Technology choice under heterogeneous �rms18

Now we expand our analysis onto an important extension: �rms having heterogeneous cost a'la Melitz
(Melitz (2003)) but with variable elasticity of substitution and endogenous investment in technology.

As above, our main question is the in�uence of the market size (and technological parameters) upon
the �rm's investments in productivity, on prices and outputs, patterns of heterogeneity among �rms.
In contrast with homogeneous case, now we are interested not only in average variables, but in their
distribution among �rms also. Is it true that more e�cient �rms make more investments to further
decrease their costs? How R&D investments in productivity change when the market size increases? (We
again mean cross-countries comparison or market integration.)

As mentioned in Intro, such questions remained irrelevant under CES-utility (zero price e�ects), so,
VES modelling is necessary here. Comparing to Zhelobodko et al. (2012), the model and conclusions are
very similar, only the endogenous technological decisions are new. Comparing to our homogeneous model,
we are going to �nd elasticity-speci�c patterns of market outcomes: increasing or decreasing productivity
of the industry subject to the nature of preferences (IED or DED) and costs.

9.1 Model

Timing and goods. The economy includes L identical consumers, one diversi�ed good, and continuum
of potential businessmen with heterogeneous abilities, their type-parameter i being distributed according
to some continuous density γ(i) de�ned on [0,∞). Here higher i denotes higher cost and Γ(t) =

´ t
0 γ(i)di

is the cumulative probability. It could be realistic to model the overlapping generations of businessmen
(or business ideas) that appear and die stochastically during many periods. However, for conciseness, we
use instead the one-period timing proposed by Melitz and Ottaviano (2008), which seems a good proxy
for many similar periods with overlapping generations.

In the beginning of each period the whole population of businessmen is newly born without knowing
their abilities. They know only the market outcome (prices, pro�ts, etc.) of �typical� period. Among
inde�nitely many potential businessmen (�rms), only N copies of each �rm-type decide to try entering the
market, and only �rms with costs lower than certain cuto� type î survive as pro�table ones (these N, î are
endogenous). Each �rm produces one �rm-speci�c variety and total number of varieties thereby amounts

to N
´ î

0 γ(i)di.
Consumers. From the consumer's point of view, all varieties bring similar satisfaction without being

perfect substitutes. So, all �rms with equal costs charge equal prices and get equal purchase sizes xij = xik.
The �rms will be identi�ed only by type, skipping index j of �rm's personality. Then, the problem of
representative consumer (rather similar to homogeneous case) becomes

U = N

ˆ î

0
u(xi)dΓ(i)→ max

xi
s.t. N

ˆ î

0
pixidΓ(i) = w ≡ 1,

where [0, î] is the set of available types of varieties, while xi is the individual consumption of each variety
of type i ∈ [0, î] . Then, as in Section (3), the inverse demand function depends on the Lagrange multiplier
λ and purchase size xi as

pi(xi) = u′(xi)/λ. (32)

Operating �rms. Each �rm's individual marginal cost depends on its type identity i and its endogenous
investments fi ≥ f̂ in the form

c̃(f, i) = i · c(f)

18This section vastly uses the approaches and proofs, notably, the cuto� behavior � from the study of Evgeny Zhelobodko,
Sergey Kokovin, Mathieu Parenti and Jacques-Francois Thisse during their joint work on Zhelobodko et al. (2012), which
includes only some of results. Thus, see also working paper Zhelobodko et al. (2011). As to ideas of �rms' selection into
R&D, we were in�uenced by Mrázová and Neary (2012) and by Peter Neary's presentation at the St.Petersburg Conference
on �Industrial organization and spatial economics� (October 10-13, 2012).
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Thereby we assume that �rms are ordered by their marginal-costs functions: c̃(f, i) > c̃(f, j)∀f ⇐⇒ i > j
(like in Zhelobodko et al. (2012)), i.e., the family of investment functions c̃(f, i) = i · c(f) satisfy the
Spence-Mirrlees condition (sort of super-modularity). As we have explained when comparing endogenous
investment and non-linear cost, the supply side can be equivalently described by a �rm-speci�c total cost
functions

C(i, q, ) = i · c(f̌(q)) + f̌(q),

where c(f) is the same investment function as in homogenous economy of previous section and f̌ is the sub-
optimized investment, introduced in Section (3). The Spence-Mirrlees condition entails similar ordering
among f -optimal total costs generated from c(.): variable cost of i-th �rm is simply i · c(f̌(q)) so that
higher types have higher costs. Naturally, all properties of functions c, C remain valid, importantly, C is
concave.

The pro�t of an operating �rm of type i is given by

π̃(i, xi, fi, λ, L) =

[
u′(xi)

λ
− ic(fi)

]
Lxi − fi.

The i− th producer pro�t maximization w.r.t. xi and fi is equivalent to maximization w.r.t. output and
gives the optimal pro�t function:

π(i, λ, L) ≡ max
xi,fi≥f̂

[
u′(xi)

λ
− ic(fi)

]
Lxi − fi = max

qi

[
u′(qi/L)

λ
qi − C(i, q, )

]
.

Using the FOC, the optimal xi and fi become functions of parameters λ and L. By substituting these
xi(λ, L) and fi(λ, L) into π̃(i, xi, fi, λ, L), we obtain the optimal pro�t π(i, λ, L) = π̃(i, xi(λ, L), f(λ, L), λ, L)
as function of λ and L. Using this function, it is easy to obtain the condition for �boundary� or cuto�
producer, i.e. such producer type î, that her pro�t equals zero:

π(̂i, λ, L) = 0. (33)

All �rms, operating in the market, thus have a type smaller than or equal to î and earn positive pro�ts,
while �rms having a type exceeding î do not produce. It is easy to �nd the signs of pro�t partial derivatives
∂π(i,λ,L)

∂i < 0, ∂qo(i,λ,L)
∂i < 0, ∂π(i,λ,L)

∂λ < 0, ∂π(i,λ,L)
∂L > 0 that we need below to study the solutions. In

particular, L given, total di�erentiation of the equation (33) w.r.t. λ shows that its solution î(λ) is
negative monotone.

Experimenting entrepreneurs. We have assumed that the cost functions are assigned randomly,
and relative frequency of type i ∈ [0,∞) is determined by some distribution function Γ(i) on [0,∞). Prior
to entering the market, each entrepreneur (potential �rm) does not know its actual future production
cost c(f, i)q + f + fe. She ad hoc spends some fe > 0 - experimenting cost or expenditure to study
one's productivity. The cost of experimenting is �xed and known to all entrepreneurs; for example, fe
is the cost of a business plan bought from a consulting �rm. All �rms make decisions simultaneously
in Nash fashion, correctly anticipating the consumer's reactions (the demand function) and the expected
competition intensity λ. This determines the equilibrium competition intensity λ such that

ˆ
î

0
π(i, λ, L)dΓ(i) = fe. (34)

Equilibrium couple (λ̂, î) is de�ned by the system of two equations (33) and (34) with two variables,
î = î(λ) and λ, other variables - outputs, investments, prices and mass N of experimenters (copies of each
type) - being the consequences derived as in Section 3, but using new labor balance:

N(

ˆ
î

0
C(i, qi)dΓ(i) + fe) = L.
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The latter equation ensures that economy is closed, all labor is spent for production and experimenting, and
zero expected pro�t (34) shows that only labor makes consumer's income. Hence, the mass of operating
�rms is given by NΓ(̂i) ≤ N and î, N are determined by free entry.

Note, that this equilibrium de�nition builds on the assumption that all �rms do invest something in
R&D (f > f0) and that there is only one cuto�, i.e., all types i > î do produce. Strictly speaking,
both properties should be proven, there could be di�erent equilibria, to be studied in another paper. The
second property can be checked by the technique proposed in Mrázová and Neary (2012) through ensuring
super-modularity of pro�t.

9.1.1 Existence and uniqueness

For equilibrium existence and uniqueness, we note that, by implicit function theorem, optimal pro�t
π(i, λ, L) decreases w.r.t. i (due to cost super-modularity), decreases w.r.t.λ, increases w.r.t. L. Therefore,
equation (33) determines the cuto� type î = î(λ) as a decreasing function of λ. Thereby, the left-hand side
in (34) is decreasing in λ for two reasons: decreasing upper limit of integration and decreasing integrand
π(i, λ, L). This gives uniqueness of equilibrium λ̂, if it exists and optimal pro�ts π(i, λ, L) are single-valued.
To see existence, note that for each i pro�t goes from limλ→0 π(i, λ, L) =∞ to limλ→∞ π(i, λ, L) ≤ 0. So,
the integral must reach positive value fe somewhere. The only obstacle for existence may be nonexistence
of optimal pro�ts π(i, λ, L) per se. However, existence condition imposed in Section 3 for homogenous
economy ensure equilibrium existence for heterogeneous �rms also.

9.2 Comparisons between good and bad �rms

Monotonicity of pro�t and optimal output qi w.r.t. type (
∂π(i,λ,L)

∂i < 0, ∂q
o(i,λ,L)
∂i < 0) enables to immedi-

ately formulate the monotonicity properties of the equilibrium curves of outputs, prices and markups.

Proposition 9. At a given equilibrium, e�cient �rms have higher outputs, more consumers and smaller
prices:

i < j ⇒ qi > qj , xi > xj , pi < pj .

Equilibrium curve of markups decreases w.r.t. cost-type i in IED case (i < j ⇒ Mi > Mj), increases in
DED case (i < j ⇒ Mi > Mj) and remains constant (1− ρ) if u(x) = xρ (CES).

Proof : see Zhelobodko et al. (2012), and apply our conversion of endogenous investment to non-linear
costs.

This proposition shows again how peculiar is CES assumption making �rms' markups independent of
their productivity. Furthermore, DED case show theoretical possibility of a paradoxical high markups for
ine�cient �rms. Indeed, when outputs decrease too fast in cost, the possible strategy for small �rms is to
compensate low output with too high markup, whereas better �rms use output-expanding strategy. To
support or falsify existence of such industries is an empirical question.

9.3 Growing market size and productivity

For comparative statics w.r.t. population L we can study the second equation. Following Zhelobodko
et al. (2012) and using partial derivatives mentioned (∂π(i,λ,L)

∂λ < 0, ∂π(i,λ,L)
∂L > 0), it is easy to show that

equilibrium intensity of competition λ̂ increases with L, i.e.

dλ̂(L)

dL
> 0.

This property allows us to �nd important changes in equilibrium value of the cut-o� �rm î(L) w.r.t. market
size L. Thus, expanding Proposition 3 of Zhelobodko et al. (2012) to concave non-linear costs (avoided
in Zhelobodko et al. (2012) but crucial here because of C(.) generated from c(.)) we formulate now main
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comparative statics result under heterogeneity. It holds locally at the equilibrium x̄ and globally when
condition IED or DED is global.

Proposition 10. Equilibrium intensity of competition λ̂ increases with market size. The cuto� type î
decreases under IED (r′u(x̄) > 0), increases under DED (r′u(x̄) < 0), remaining constant when utility u(·)
is the CES.

Proof : see Zhelobodko et al. (2012), and apply our conversion of endogenous investment to non-linear
costs.

So, in IED case cuto� î value decreases with L, and thereby some group of least-e�cient �rms leaves
the market. Thereby, the average productivity should increase, if generally outputs increase (see an example
below). Then two pro-e�ciency forces work together: each �rm expands R&D and the �rms' composition
improves, simply because worst �rms drop out of the market .

This joint e�ect can be an important reason for gains from international trade (markets integration),
underestimated by formal theory so far. In contrast to typical views of the journalists, when domestic
weakest �rms do not survive, this should have a positive productivity e�ect, at least in the long run.
Interestingly, DED case shows a theoretical possibility of the opposite e�ect for related industries. Again,
CES case looks very peculiar and inappropriate for modelling productivity changes in response to market
size.

Further, we would like to get similar predictions about outputs and prices. For the case of constant
marginal cost, working paper Zhelobodko et al. (2011) derives such comparative statics. Namely, increasing
market size drives up outputs of all existing �rms, and all prices go down in IED market, whereas e�ects
are opposite in DED market. Naturally, CES market (original Melitz model) shows no impact.

Obviously, these e�ects remain valid in our more general model when all �rms operate in constant-
cost regime (minimal investment). Besides, one would expect somewhat similar behavior under weakly
changing marginal costs of each �rm. Other general analytical answers on changes in outputs and prices
are hardly attainable. They dependent on the distribution. So, we turned to special cases.

Special case 1: CES investment function. For general case of our complicated model with
investments we do not hope for general analytical conclusions of this kind. So, we turned to studying
special functional forms. On the cost side, a form allowing for clear predictions is CES investment function
with some power γ > 019

c(f, i) =

{
i · f−γ f > f̂

i · ĉ f ≤ f̂
(35)

It is easy to check, that this investment function generates total cost C with constant elasticity in the
R&D regime (though it increases in another regime):

EC(q) =
1

1 + γ
: f > f̂ .

Then, using main equilibrium equation

ER(q/L) = 1− ru(x) = EC(q) (36)

(where R is revenue) applied only to the cuto� �rm, it is easy to derive the impact of market size for such
special costs. Assume IED market (r′u > 0) and R&D regime for all �rms. Since ER(qi/L) decreases and
ER(qi/L) = 1

1+γ remains constant, the markup ru(xi) of the current cuto� �rm (changing the identity i)
remains constant, so, its output remains constant.

19CES investment function is incompatible with CES utility and DED utilities when modeling R&D regime.
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Figure 3: (A) Outputs under IED as function of type; (B) Outputs under DED.

Special case 2: AHARA utility function and HARA investment function. Instead of special costs
we can study special utilities. Our favorite functional class is augmented hyperbolic average risk aversion
(AHARA) utility, formulated as

u(x) =
(d+ x)ρ − dρ

h
− l · x : ρ ∈ (0, 1), d ≥ 0, l Q 0, h > 0.

The motive for this functional form is to have CES as a special case under d = 0, l = 0 and to model both
e�ects: (1) IED e�ect under d > 0 or/and l < 0; (2) DED e�ect under l > 0. AHARA is a su�ciently
rich functional class. In particular, it tightly approximates a linear demand when both d and l tend to
in�nity, being compensated by su�ciently small h. Therefore, changing the parameters, we cover the
whole interval of IED cases between CES and linear demand.

Thus, we turned to massive simulations for this parameterized functional classes. �Massive� means
exploring whole domain of possible parameters through thousands of points picked from the domain.
Then we perceive the results as sort of theorems.

Namely, we used the investment function

c(f, i) =

{
i · (a+ f−γ) f > f̂

i · ĉ f ≤ f̂

and AHARA function with ρ = 1/2, d = 0, and parameter varying in l ∈ [−10, 10] with step 0.01.
Simulations has shown the following results.

Observation 1 (Outputs, investments, markups, welfare). Suppose market increases from L1 to L2.
Then, at these two equilibria compared:

(i) In IED case, there is an una�ected type i0 keeping its output unchanged, whereas all more productive
�rms increase their outputs (i < i0 ⇒ qi(L1) < qi(L2)) and all worse �rms i > i0 decrease outputs
(i > i0 ⇒ qi(L1) > qi(L2)); all prices go down.

(ii) In DED case, there is an una�ected type i0 keeping its output unchanged, whereas all more pro-
ductive �rms increase their outputs (i < i0 ⇒ qi(L1) > qi(L2)) and all worse �rms i > i0 decrease outputs
(i > i0 ⇒ qi(L1) < qi(L2)); all prices go up.

In all cases, investments and markups change in the same direction as outputs. Welfare unambiguously
increase in IED case.

To illustrate this observation, in Figure 3 we draw related behavior of outputs-curve and prices-curve
in IED (left panel) and DED (right panel) cases. The red curve shows initial characteristics of all �rms,
whereas the blue one shows similar curve after the market size increased from L1 to L2. The behavior of
outputs and prices for IED (left panel) and DED (right panel) is illustrated by Figure 4.

Similar patterns of changes in outputs and prices were found in Zhelobodko et al. (2011) for constant
marginal costs. Now we expand them to special cases of non-linear concave costs generated from the
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Figure 4: (A) Markups under IED as function of type; (B) Markups under DED.

investment function and �nd investments. Theoretically, we expect that more exotic shifts of parameters
than we tried may �nd di�erent patterns.

We interpret the mechanism of these changes stated in Proposition 10 and Observation 1 as follows.
When market increases, existing �rms start making more pro�ts. This invites new experimenting business-
men (N ↑) and thereby pulls up consumer's marginal utility of income, that can be spent on more varieties
(λ ↑). The two countervailing forces changing the inverse demand for each variety is market size pulling its
quantity-dimension to the right (L ↑) and competition intensity, pushing its price-dimension down (λ ↑).
Among all �rms there exists a �rm i0 where these forces exactly outweigh each other in their in�uence on
markup, output and investment respectively. However, to the right and to the left from this �rm changes
are very di�erent in IED or DED markets. In IED case that appears economically more probable, these
are productive �rms who increase their output, investment and markups, whereas the share of weak and
negatively a�ected �rms looks very small. Average output goes up and average productivity improves for
3 reasons: (1) e�cient �rms start producing more; (2) the cuto� (threshold between producing and idle
�rms) goes down, i.e., worst �rms decrease their output and even exit the market; (3) better �rms further
increase their investments in productivity.

Unfortunately for DED markets, their productivity e�ect is negative, since the same 3 reasons change
the sign; here most �rms decrease their outputs compensating this by charging higher markups, that
potentially may be harmful for welfare.

10 Conclusions and extensions

Endogenous technology choice is a popular topic, but only recently has its theoretical representation been
achieved in a rich enough model (Vives (2008)), one demonstrates that both the positive and negative
impacts of a big market on investments in productivity.

Having in mind extensions to trade and cross-countries comparisons, we modify the Vives's model into
the monopolistic competition framework, get rid of the quasi-linearity assumption (absent income e�ect)
and strategic oligopolistic considerations. The resulting model becomes simpler and more tractable.

The �ndings include necessary and su�cient conditions for positive (under increasingly-elastic demand
� IED) and negative (under decreasingly-elastic demand) e�ects of market expansion onto R&D invest-
ments. Further, these investments can be excessive or insu�cient from the social optimality perspective,
the outcome depends on increasingly or decreasingly elastic utility. The most plausible case is the combi-
nation IED+DEU properties; then equilibrium R&D investments are insu�cient but increase and become
closer to the (increasing) social optimum, i.e., again productivity enhances. Certain governmental reg-
ulation may help in the same direction, either in the form of taxing/subsidizing the revenue, or R&D
costs.

An important extension is multiple industries interacting with each other under endogenous technology:
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the main �ndings about R&D remain valid, because the industries interect only through the marginal
utility of income.

Among the extensions studied, heterogeneous �rms is the most interesting one. Here the main dis-
tinction between the IED and DED markets remains, and in the �rst (more plausible) case the �rms also
generally show increasing R&D in response to market expansion, productivity enhances. More importantly,
in IED case the cuto� decreases, that means the second important way of enhancing productivity: better
�rms selection by the market.

We hope that our approach sets interesting questions for empirical studies: Do markets of various
goods really di�er in their increasing or decreasing elasticity of substitution and related market e�ects?
Do bigger markets (countries or cities) have higher R&D investments in certain industries, unlike other
industries?

For policy-making, our topic may be interesting because of new understanding of gains from trade:
technological changes in response to trade liberalization. Furthermore, for modernization and active
industrial policy practiced in some countries it can be interesting, which equilibrium outcome in various
sectors may follow from some stimulating measures like tax reductions conditional on R&D.

Possible extensions of our model include introducing detailed international trade, though we expect
there similar productivity e�ects as in our basic model, because lowering trade barriers work similarly to
market expansion.

11 Appendix A: Lemmas on comparative statics without di�erentiabil-

ity

Like in our another paper, Gorn et al. (2012), devoted to �xed technologies, we need the properties of the
maximal per-consumer pro�t π∗u(λ) and the (set-valued) argmaximum

X∗u(λ) ≡ arg max
x∈R+

π(x, λ) = arg max
x∈R+

u′(x)Lx/λ− C(Lx) : (37)

which (under λ > 0, L > 0) is equivalent to maximizing �normalized� pro�t:

X∗u(λ) = arg max
x∈R+

λπ(x, λ)/L = arg max
x∈R+

u′(x)x− λC(Lx)/L.

Geometrically, comparative statics of arg maxx∈R+ π(x, λ) means that revenue curve Ru(x) ≡ u′(x)Lx
decreases in λ, i.e., the left-hand side decreases in the FOC equation

LRu(x)/λ = LC ′(Lx).

Based on ideas of Milgrom and co-authors, we de�ne three kinds of �decreasing� mapping (set-valued
function) X : R→ 2R. We call a mapping X(λ) (strictly) decreasing, when its extreme members decrease
in the sense

λ̄ > λ̃⇒ min
x∈X(λ̄)

< min
x̃∈X(λ̃)

and max
x∈X(λ̄)

< max
x̃∈X(λ̃)

, (38)

and non-increasing when all the inequalities are non-strict. We call X strongly decreasing, when all its
selections decrease in the sense

λ̄ > λ̃⇒ x̄ < x̃, ∀x̄ ∈ X(λ̄) ∀x̃ ∈ X(λ̃). (39)

The latter (strongest) version of negative monotonicity implies mappingX single-valued almost everywhere
but for isolated points (downward jumps).

To prove the strongest type of monotonicity of our argmaxima X∗u w.r.t. (λc), we shall apply three
known lemmas and derive the fourth lemma from them, more closely related to what we need. The �rst is
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the following simpli�ed version of a theorem from Milgrom and Roberts (1994, Theorem 1).20 It predicts
strictly monotone comparative statics of both extreme roots x̂ ≤ x̌ of any equation g(x, λ) = 0 with a
parameter λ.

Lemma 1. (Monotone roots, Milgrom and Roberts): Assume a partially ordered set Λ, some x > x
and a parameterized function g(., .) = g(x, λ) : [x, x]×Λ→ R which is continuous and weakly changes the
sign, in the sense [g(x, λ) ≥ 0 & g(x, λ) ≤ 0 ∀λ ∈ Λ]. Then for all λ ∈ Λ:

(i) there exist some non-negative root(s) of equation g(x, λ) = 0, including the lowest solution x̂ ≡
sup{x|g(x, λ) ≥ 0 and the highest solution x̌ ≡ inf{x|g(x, λ) ≤ 0};21

(ii) if our function g(x, λ) is non-increasing w.r.t. λ everywhere, then both extreme roots x̂(λ), x̌(λ)
are non-increasing w.r.t. λ, i.e., X̄(λ) is non-increasing;

(iii) if, moreover, g(x, λ) is decreasing in λ and strictly changes the sign [g(x, λ) > 0 & g(x, λ) <
0 ∀λ ∈ Λ], then both extreme roots x̂, x̌ are decreasing, i.e., X̄(λ) decreases.

The intuition behind this lemma is simple: when we shift down any continuous curve whose left/right
wings are above/below zero�the roots should decline. More subtile fact is that when some root x̌ disap-
pears, the jump goes in the same direction as all continuous changes, i.e., downward.

We apply this lemma to the (continuous) auxiliary function g gained from FOC of π(x, λ):

X̄(λ) ≡ {x| g(x, λ) ≡ [u′(x) + xu′′(x)− λ · C ′(Lx)/L] = 0}, (40)

using Λ = [0,∞). We conclude that mapping X̄ is �non-increasing�. We would like to enforce this property;
to �nd �decreasing� X̄ at those λ and domains [x, x], where we can apply claim (iii). Locally, this task
is easy: at a given λ, we can apply (iii) to any vicinity (x, x) 3 x́ > 0 of any positive local argmaximum
x́|g(x́, λ) = 0�whenever strict SOC holds. The latter means that u′(x) + xu′′(x) decreases at x́, i.e.,
isolated argmaximum. Thereby, any positive local argmaximum x satisfying strict SOC�locally decreases
in λ.

Searching more globally for decreasing X̄, on a positive ray we would like to identify a subinterval
(λmin, λmax) ⊂ [0,∞) where claim (iii) is applicable. This amounts to �nding where all roots of equation
(40) are positive and �nite, under Assumption 1.

Lowest λ yielding x ∈ (0,∞). Consider the case when our elementary revenue Ru(x) = xu′(x) has
a �nite global argmaximum denoted

xmax ≡ arg max
x

Ru(x)

(that implies satiable demand). Then, obviously, all positive λ enable �nite solutions to (40), i.e., we must
take the lower bound λmin = MR = u′(xmax) + xmaxu

′′(xmax) = 0 (using notations from (3)). Similar is
the result under insatiable demand (xmax =∞) but zero limiting value limx→∞(u′(x)+xu′′(x)) = 0, using
our assumptions. Anyway, we must take zero λmin = MR = 0 when we search for an interval (λmin, λmax)
bringing positive �nite roots of g.

Highest λ yielding x ∈ (0,∞). Recall notationMR from (3) and consider the case of �nite derivative
at the origin (MR < ∞), that implies chock-price. Then all high parameters λ ≥ MR should bring zero
solutions x̂(λ) = x̌(λ) = 0 to (40), for lower parameters the solutions are positive. In the case of in�nite
derivative MR = ∞ all λ bring positive x. We conclude that anyway we must take �nite or in�nite
λmax = MR as a boundary, that determines the open interval

Λ̂ ≡ (λmin, λmax) ≡ (0,MR),

which brings positive �nite roots of g.
Now we can apply claim (iii) to this interval Λ̂, because our function g(x, λ) ≡ [u′(x) + xu′′(x) − λ]

takes positive valueMR−λ > 0 at the lower boundary x = 0 and negative valueMR−λ < 0 at x = xmax

20Their original Theorem 1 uses g(x, t) non-decreasing in t, continuous �but for upward jumps�, and domain [x, x] = [0, 1]
which makes a minor di�erence.

21Naturally, when �nite x̂(λ) = min{x|g(x, λ) = 0}, x̌(λ) = max{x|g(x, λ) = 0}).
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(for all λ ∈ Λ̂). Additionally, g remains strictly decreasing in λ. It also strictly decreases in x at both
boundaries (x, x), because of strict concavity of xu′(x) at 0 and xmax (Assumption 1). Thus, our function
g(x, λ) satis�es the boundary conditions and monotonicity conditions needed for Lemma 1-(iii), which
implies strict decrease of the extreme roots x̂(λ) ≤ x̌(λ) on Λ̂.

It must be added that both extreme roots x̂(λ) ≤ x̌(λ) of (40) are the local maxima (not minima) of
function π(x, 1, λ) ≡ xu′(x)−λx, because of SOC. Indeed, by de�nition of x̂, x̌, function g(x, λ) > 0 must
be (strictly) decreasing in some left vicinity of the left point x̂, and in some right vicinity of x̌. Using
continuous di�erentiability of xu′(x) (Assumption 1) we expand this decrease to complete (left and right)
vicinities of each point x̂, x̌. This decrease of g(x, λ) ≡ π′(x, 1, λ) means SOC. We can summarize our
arguments as follows.

Proposition (Monotone local argmaxima). Each local argmaximum of the normalized pro�t λπ(x, λ)/L
is non-increasing w.r.t. λ ≥ 0. Moreover, the argmaximum decreases when being positive and �nite, which
is guaranteed only on interval Λ̂ ≡ (0,MR). In the case of (very big) �nite λ ∈ [MR,∞) all argmaxima
are zero.

Now, to establish similar monotonic behavior of global argmaxima setX∗u we use �single crossing� notion
and Theorems 4, 4′ from Milgrom and Shannon (1994) simpli�ed here for our case of real parameter t and
unidimensional real domain S(t) of maximizers.

Consider a function g : R2 → R. If g(x′, t′′) ≥ g(x′′, t′′) implies that g(x′, t′) > g(x′′, t′) ∀(x′ > x′′, t′ >
t′′), then g satis�es the strict single crossing property in (x; t). Similarly, single crossing property means

[g(x′, t′′) ≥ g(x′′, t′′)⇒ g(x′, t′) ≥ g(x′′, t′)∀(x′ > x′′, t′ > t′′)

and
g(x′, t′′) > g(x′′, t′′)⇒ g(x′, t′) > g(x′′, t′) ∀(x′ > x′′, t′ > t′′)]

(essentially, in these two versions of single-crossing notion, parameter t strictly or weakly ampli�es mono-
tonicity of g in x, alike supermodularity).

Lemma 2 (Monotone argmaxima, Milgrom and Shannon). Consider a domain S(t) : R → 2R which
is non-shrinking w.r.t. t (non-decreasing by inclusion) and a function g : R2 → R. If g satis�es the single
crossing property in (x; t), then arg maxx∈S(t) g(x, t) is monotone non-decreasing in t. If g satis�es the
strict single crossing property in (x; t), then every selection x∗(t) from arg maxx∈S(t) g(x, t) is monotone
non-decreasing in t.

It is important that the latter claim about all selection implies that all points of multi-valued g(., t)
are �isolated�, in the sense that there is no open interval of multi-valuedness (we could claim �solid� single-
valuedness but such enforcement is not necessary). The third result that we need�is similar to envelope
Theorems 1, 2 from Milgrom and Segal (2002) but for more trivial conditions and claim, not needing
special proof.

Lemma 3 (Monotone maxima) Consider a compact choice set X, continuous function g(x, t) : X ×
[0, 1]→ R and π∗(t) = supx∈X g(x, t). If π(x, t) continuously decreases in t for all x ∈ X, t ∈ (0, 1), then
its maximal value π∗(t) continuously decreases in t ∈ (0, 1).

Now, using our notations MR,MR, xmax and new notions

λcmax ≡MR/LC ′(Lxmax), Rmax ≡ xmaxu′(xmax),

(that can be in�nite) we formulate and prove the result we were long driving to.
Lemma 4 (Monotone argmaxima and maxima): Consider some given L > 0 and parameter λ increas-

ing in the open interval Λ(L) = (0, λcmax). Then:
(i) On Λ(L) the argmaxima set X∗u(λ) ≡ arg maxx[xu′(x) − λC(Lx)/L] is non-empty and strongly

decreases from xmax to 0 (i.e., all its selections decrease).
(ii) The maximal objective function π∗u(λ) ≡ [Lxu′(x)/λ − C(Lx)] continuously decreases from +∞

to 0. Outside Λ(L), for bigger λ ≥ λcmax all argmaxima and maxima remain zero, whereas the limiting
values are:
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lim
λ→0

π∗u(λ) =∞, lim
λ→∞

π∗u(λ) = 0. (41)

Proof. It is convenient to argue about auxiliary pro�t g = xu′(x) − λC(Lx)/L and then return to
real one.

Using S ≡ R+, we can apply Lemma 2 to our auxiliary function g(x, t) ≡ π(x,−t) with λ = −t > 0
because evident is strict single crossing property: increase of π′x(x,−t) = u′(x) + xu′′(x) + t w.r.t. t < 0.
Thereby, whenever X∗u(λ) exists, every selection x∗(λ) from X∗u(λ) is monotone non-increasing when
x > 0. This yields almost unidimensional X∗u(λ), i.e., absence of any open intervals for λ maintaining
multi-valued X∗u(λ). In other words, X∗u(λ) is single-valued but for some �isolated� downward jumps. In
essence, this fact follows from smoothness of xu′(x) (Assumption 1). Smoothness makes function π′x(x,−t)
single-valued and strict single crossing property applicable (geometrically, a smooth set�undergraph of
xu′(x)�cannot have multiple tangent slopes λ at the same point x).

To transform such monotonicity into strongly decreasing X∗u(λ) on interval Λ(L) (at �nite positive
X∗u), we apply Proposition 1 used for any local maximum. Since global maxima are among local ones, in
the intervals of single-valued X∗u = x̂ = x̌ they must strictly decrease. The remaining isolated points of
multi-valued X∗u are the points of downward jumps, as we have found. We conclude that mapping X∗u(λ)
strongly decreases on interval Λ(L), remaining in�nite for smaller λ and remaining zero for higher λ.

Now we turn to the value function and apply Lemma 3 to ensure monotonicity of maximal π∗u(λ).22

Indeed, the objective function πu(x, λ) continuously decreases w.r.t. λ everywhere under positive x.
Thereby its optimal value π∗u also continuously decreases when positive, i.e., on our interval (0, λcmax).
The optimal value π∗u → 0 when λ → λcmax because of monotonicity and zero lower bound found in
proposition 1, so continuity at the upper boundary of our interval Λ(L) is maintained. Similar logic proves
continuity at the lower boundaryMR = 0. Thus, the maximal value of π∗u(λ) decreases continuously from
MR to 0 under increasing λ ∈ [0,∞). The transfer of statements from auxiliary pro�t g(λ) to initial π∗u(λ)
is rather obvious. This completes the proof of lemma.

12 Appendix B: Proofs

12.1 Proof of Proposition 1

In symmetric case, the equilibrium equations (5), (6), (9), (10) are

u′′(x)x+ u′(x)

λ
− c(f) = 0 (42)

c′(f)Lx+ 1 = 0 (43)

u′(x)

λ
− c(f) =

f

Lx
(44)

N (c(f)xL+ f) = L. (45)

Let us rewrite (42) as

(1− ru(x)) · u
′(x)

λ
− c(f) = 0. (46)

Substitute (44) in (46), one has
ru(x)

1− ru(x)
=

f

Lxc(f)
(47)

22For revealing monotonicity of π∗u(λ, c) we cannot use more standard envelope theorem since π∗u appears non-di�erentiable
at the asymmetry points.
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Hence (11) is shown. Further, using (43) one has from (11)

(1− Ec(f)) (1− ru(x)) = 1

Now to obtain (12) it is su�cient to remark that

rln c(f) = −

(
c′(f)

c(f)

)′
c′(f)

c(f)

· f = rc(f) + Ec(f). (48)

Further, in symmetric case, (8) is

−(u′′′(x)x+ 2u′′(x)) c′′(f)x

λ
−
(
c′(f)

)2
> 0,

i.e.

− (2− ru′(x)) · u
′′(x)c′′(f)x

λ
−
(
c′(f)

)2
> 0. (49)

One has due to (42), (44) and (43)

u′′(x)x

λ
= c(f)− u′(x)

λ
= − f

Lx
= c′(f)f.

Hence (49) is

− (2− ru′(x)) c′(f)c′′(f)f −
(
c′(f)

)2
> 0,

i.e.
((2− ru′(x)) rc(f)− 1)

(
c′(f)

)2
> 0.

Now to obtain (13) it is su�cient only to remark that ru(x) < 1 due to, for example, (11).
Finally, (14) is obvious due to (45).
As to the the price, since in symmetric equilibrium (4) is

p =
u′(x)

λ

and from (46)

u′(x)

λ
=

c(f)

1− ru(x)

one has (15).
As to the markup, due to (15) one has

p− c(f)

p
=ru(x) (50)

Let us express ru(x) in terms of N , f and L. One has due to (47)

ru (x) =
f

f + Lc(f)x

hence, due to (45)

ru (x) =
Nf

L
(51)

Now from (50) and (51) one has (16).
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12.2 Proof of Proposition 2

Let us �rst prove (20), (22) and (24), i.e. calculate Ex, Ef and EN , using (11), (43) and (45), i.e.

ru (x)x

1− ru (x)
− f

Lc(f)
= 0 (52)

c′(f)Lx = −1 (53)

(c(f)xL+ f)N − L = 0 (54)

Let us calculate the total derivatives w.r.t. L:(
ru (x)x

1− ru (x)
− f

Lc(f)

)′
L

+

(
ru (x)x

1− ru (x)
− f

Lc(f)

)′
x

· ∂x
∂L

+

(
ru (x)x

1− ru (x)
− f

Lc(f)

)′
f

· ∂f
∂L

= 0

(
c′(f)Lx

)′
L

+
(
c′(f)Lx

)′
x
· ∂x
∂L

+
(
c′(f)Lx

)′
f
· ∂f
∂L

= 0

((c(f)xL+ f)N − L)′L + ((c(f)xL+ f)N − L)′x ·
∂x

∂L
+ ((c(f)xL+ f)N − L)′f ·

∂f

∂L
+

+ ((c(f)xL+ f)N − L)′N ·
∂N

∂L
= 0

i.e., in terms of elasticities Ex, Ef , EN , using the identity

r′u (x)x = (1 + ru (x)− ru′ (x)) ru (x)

and equations (53), (54) (52), we obtain

f

L2c(f)
+

2− ru′ (x)

1− ru (x)
· f

L2c(f)
· Ex +

(
c′(f)f

c(f)
− 1

)
· f

L2c(f)
· Ef = 0 (55)

1 + Ex +
c′′(f)f

c′(f)
· Ef = 0 (56)

c(f)xN − 1 + c(f)xN · Ex + EN = 0 (57)

Now remark that in equation (55) one has due to (48) and (12)

c′(f)f

c(f)
− 1 = Ec(f)− 1 = rln c(f)− rc(f)− 1 = − 1

1− ru (x)
(58)

while in equation (56) one has
c′′(f)f

c′(f)
= −rc(f). (59)

Moreover in equation (57) one has due to (54) and (52)

c(f)xN = 1− f

L
·N = 1− ru (x)xc(f)

1− ru (x)
·N

hence (
1 +

ru (x)

1− ru (x)

)
c(f)xN = 1

i.e.
c(f)xN = 1− ru (x) (60)
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Thus, substituting (58) in (55), (59) in (56) and (60) in (57) we obtain the following three linear equations
w.r.t. Ex, Ef and EN :

(2− ru′ (x)) · Ex − Ef = ru (x)− 1

Ex − rc(f) · Ef = −1

(1− ru (x)) · Ex + EN = ru (x)

From these, one has

Ef = (2− ru′ (x)) · Ex − ru (x) + 1 = (2− ru′ (x)) · (rc(f) · Ef − 1)− ru (x) + 1

i.e.

Ef =
1 + ru (x)− ru′ (x)

(2− ru′ (x)) rc(f)− 1
=

r′u (x)x

((2− ru′ (x)) rc(f)− 1) ru (x)

hence formula (22) for Ef is proved.
Further, using (12), we can derive

Ex = rc(f) · Ef − 1 =
(1 + ru (x)− ru′ (x)) rc(f)− (2− ru′ (x)) rc(f) + 1

(2− ru′ (x)) rc(f)− 1
=

=
(1− rln c(f)) (1− ru (x))

(2− ru′ (x)) rc(f)− 1

hence formula (20) for Ex is proved.
Now let us calculate

EN = ru (x)− (1− ru (x)) · Ex = ru (x)− (1− rln c(f)) (1− ru (x))2

(2− ru′ (x)) rc(f)− 1
=

= 1− (1− ru (x)) r′u (x)xrc(f)

(2− ru′ (x)) rc(f)− 1

hence formula (24) for EN is proved.
Further,

ELx = Ex + 1 =
(1− rln c(f)) (1− ru (x))

(2− ru′ (x)) rc(f)− 1
+ 1 =

r′u (x)xrc(f)

((2− ru′ (x)) rc(f)− 1) ru (x)

hence formula (21) for ELx is proved.
Further, due to (12), one has, after some simpli�cations,

ENf = Ef + EN =
r′u(x)x

((2− ru′(x)) rc(f)− 1) ru(x)
+ ru(x)− (1− rln c(f)) (1− ru(x))2

(2− ru′(x)) rc(f)− 1
=

=
1 + ru(x)− ru′(x)− (1− rln c(f) + rc(f)) (1− ru(x)) (1− ru(x)) + (1− ru(x))2 rc(f)

(2− ru′(x)) rc(f)− 1
+ ru(x) =

=
(1− rln c(f))2 (1− ru(x))2

((2− ru′(x)) rc(f)− 1) rc
+

1

rc(f)
+ ru(x)

hence formula (23) for ENf is proved.
Further, one has from (15)

∂p

∂L
=

(
c(f)

1− ru(x)

)′
x

· ∂x
∂L

+

(
c(f)

1− ru(x)

)′
f

· ∂f
∂L

=
c(f)r′u(x)

(1− ru(x))2 ·
∂x

∂L
+

c′(f)

1− ru(x)
· ∂f
∂L
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hence
p

L
· Ep =

c(f)r′u(x)

(1− ru(x))2 ·
x

L
· Ex +

c′(f)

1− ru(x)
· f
L
· Ef

therefore, due to (15) and (12),

Ep =
c(f)r′u(x)x

(1− ru(x))2 p
· Ex +

c′(f)f

(1− ru(x)) p
· Ef =

=

(
1− rln c(f) +

rln c(f)− rc(f)

ru (x)

)
r′u (x)x

(2− ru′ (x)) rc(f)− 1
= − rc(f)r′u (x)x

(2− ru′ (x)) rc(f)− 1

hence formula (25) for Ep is proved.
As to elasticity of the markup, one has due to (50)

E p−c
p
/L = Eru/L = Eru/x · Ex/L =

r′u (x)x

ru(x)
· Ex/L =

r′u (x)x

ru(x)
· (1− rln c(f)) (1− ru (x))

(2− ru′ (x)) rc(f)− 1

hence formula (26) for E p−c
p
/L is proved.

Finally, the signs of elasticities, presented in the Table, can be obtained directly from the formulas for
elasticities. The only thing to show is that

r′u(x) < 0 =⇒ rln c(f) > 1 (61)

Indeed, one has due to (13) and (12)

(1 + ru(x)− ru′(x) + 1− ru(x)) rc(f) > (1− rln c(f) + rc(f)) (1− ru(x))

i.e.
(1 + ru(x)− ru′(x)) rc(f) > (1− rln c(f)) (1− ru(x))

r′u(x) · xrc(f)

ru(x)
> (1− rln c(f)) (1− ru(x)) .

Since rc(f) > 0, ru(x) > 0 and moreover (see (13)) 1− ru(x) > 0, implication(61) is shown.

12.3 Proof of Proposition 3

Using Appendix A, we apply Lemma 1, which predicts a monotone comparative statics of any extreme
(minimal and maximal) roots q̂, q̌ of any continuous equation g(q, L) = 0 w.r.t. parameter L, when function
g changes the sign. (The intuition behind this lemma is simple: when we shift up any continuous curve
whose left wing is above zero and the right wing is below zero�the roots must shift to the right, including
the case of jumps). We apply this lemma to our main equilibrium equation g(q, L) ≡ ER(q/L)−EC(q) = 0.
We ensure the needed conditions g(0, L) > 0, g(∞, L) < 0 by our general existence assumptions (18).
Using our assumptions on u, c, both elasticities are continuous, so, existence of some roots qi : g(q, L) = 0
is guaranteed. To state roots monotonicity like claim (i), we use (∂ER∂L > 0) in IED case (another case
is proved similarly). Thereby comparing any two single-valued equilibria, we immediately get claim (i):
q1 = q̂ < q̌ = q2. However, the proof becomes more involved under multiple intersections of ER(q/L), EC(q),
which means multi-valued argmaxima of pro�t. Which intersection relates to real equilibrium (which local
argmaximum is global)? What happens at the points of jumps? Using our lemmas, we shall show that
the �global� switch between the roots of FOC always goes in the same direction as the continuous changes
in the local argmaxima. This argument uses the indirect way, through claim (iii) about behavior of λ.

Under non-trivial output q∗(λ, L) > 0, our pro�t π(q, λ, L) ≡ qu′(q/L)/λ − C(q) decreases in λ and
increases in L. Then (using Lemma 4), maximal pro�t π∗(λ, L) ≡ maxq≥0 π(q, λ, L) is also a decreasing
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continuous function of λ and increasing continuous function of L. Therefore, (applying Lemma 1 to
g = π∗(λ, L)) the free-entry equation π∗(λ, L) = 0 implies λ and L moving in the same direction, i.e.,
continuously increasing equilibrium root λ̂(L) > 0 (which becomes inde�nite only under trivial output
q∗(λ, L) = 0).

More speci�cally, to derive the elasticity Eλ(L)/L of equilibrium λ, we totally di�erentiate w.r.t. L the
free entry condition

π = q · u
′(q/L)

λ(L)
− C(q) = 0

� ignoring q′L (due to the envelope theorem). We get

π′L = −q2 · u
′′(q/L)

λ(L)L2
− qu′(q/L)

λ2(L)
· λ′(L) = 0⇒

−q · u
′′(q/L)

u′(q/L)
=

L2

λ(L)
· λ′(L),

and obtain the needed elasticity, equal to that of the inverse demand:

Eλ(L)/L = L · λ
′(L)

λ(L)
= − q

L
· u
′′(q/L)

u′(q/L)
= ru(q/L).

Now, to detect single-crossing of pro�t, we can study the total derivative of marginal revenue R′q at
any q w.r.t. L (that must take into account the dependence λ(L)). Marginal revenue is

R′q(q, L, λ(L)) ≡ u′(q/L) + qu′′(q/L)/L

λ(L)
.

At given q, the elasticity of the numerator w.r.t. L is

L ·
d
dL [R′q(q, L, λ(L))λ(L)]

R′q(q, L, λ(L))λ(L)
= L · −2qu′′(q/L)/L2 − q2u′′′(q/L)/L3

u′(q/L) + qu′′(q/L)/L
=

=
−2− qu′′′(q/L)

Lu′′(q/L)

u′(q/L)
qu′′(q/L)/L + 1

=
ru′(q/L)− 2

1− 1
ru(q/L)

,

whereas the elasticity of the denominator was just found as ru(q/L). Then, at given q, positive total
elasticity of marginal revenue R′q w.r.t. L means condition

ru′(q/L)− 2

1− 1
ru(q/L)

− ru(q/L) > 0⇔ ru′(q/L)− 2

1
< ru(q/L)[1− 1

ru(q/L)
]⇔

⇔ ru′(q/L)− 1 < ru(q/L).

This is a condition for supermodularity (strict single-crossing) of π(q, L) along the equilibrium path ac-

counting for λ(L). We apply identity r′u(z)·z
ru(z) = 1 + ru(z)− ru′(z) to the above condition and reformulate

it as
0 < 1− ru′(q/L) + ru(q/L).

We conclude that Eru ≡
r′u(x)·x
ru(x) > 0 is a necessary and su�cient condition for supermodularity (strict

single-crossing). Further, by Lemma 2, pro�t strict single-crossing in (x, L) is a necessary and su�cient
condition for �strongly� non-decreasing output q(L) along the equilibrium path, with or without jumps.
Using Lemma 2 and IED condition (r′u > 0) we conclude that all selections q(L) non-decrease. Then any
jumps (multiple argmaxima) are isolated points and must go downward. Taking into account this fact and
that all singleton argmaxima increase, we get �strongly� increasing output q(L) under IED (decreasing
q(L) under DED is proved similarly).

The outcomes for prices and masses of �rms are evident from the equilibrium equations.
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12.4 Proof of Proposition 4

One has 
∂

∂x

(
Lu(x)

c(f)xL+ f

)
≡ (c(f)xL+ f)u′(x)− u(x)c(f)L

(c(f)xL+ f)2 · L = 0

∂

∂f
≡ −(c′(f)xL+ 1)u(x)

(c(f)xL+ f)2 · L = 0

Therefore, FOC is rlnu − ru =
cxL

cxL+ f
c′xL = −1

Further,

∂2

∂x2

(
Lu(x)

c(f)xL+ f

)
≡

((cxL+ f)u′ − ucL)′x (cxL+ f)− 2 ((cxL+ f)u′ − ucL) (cxL+ f)′x
(cxL+ f)3 · L =

=
cLu′ + (cxL+ f)u′′ − u′cL

(cxL+ f)2 · L =
u′′

cxL+ f
· L = Nu′′ < 0

∂2

∂f2

(
Lu(x)

c(f)xL+ f

)
≡ −

((c′xL+ 1)u)′f (cxL+ f)− 2 (c′xL+ 1)′f (c′xL+ 1)u(x)

(cxL+ f)3 · L =

= − c′′xLu

(cxL+ f)2 · L = −c′′xN2u = −c
′′u′xN

c
< 0

∂2

∂x∂f

(
Lu(x)

c(f)xL+ f

)
≡

((cxL+ f)u′ − ucL)′f (cxL+ f)− 2 (cxL+ f)′f ((cxL+ f)u′ − ucL)

(cxL+ f)3 · L =

=
(c′xL+ 1)u′ − uc′L

(cxL+ f)2 · L = − uc′L2

(cxL+ f)2 = −uc′N2 = −c
′u′N

c

Hence

det


(

Lu(x)

c(f)xL+ f

)′′
xx

(
Lu(x)

c(f)xL+ f

)′′
xf(

Lu(x)

c(f)xL+ f

)′′
xf

(
Lu(x)

c(f)xL+ f

)′′
ff

 =

= −Nu′′ · c
′′u′xN

c
−
(
c′u′N

c

)2

= −
(
u′N

f

)2

Ec · (Ec + rcru) .

Therefore, SOC is

Ec + rcru > 0
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12.5 Proof of Proposition 5

One has

0 = 1− ru −
cxL

cxL+ f
= −ru +

f

cxL+ f

Since c′(f)xL = −1, function f is a monotone function of x. Then

d

dx

(
1− ru −

cxL

cxL+ f

)
= −r′u +

(cxL+ f) f ′x − (c′xLx+ cL+ f ′x) f

(cxL+ f)2 =

= −r′u +
−fcL+

(
c− fc′f

)
f ′xLx

(cxL+ f)2

where

f ′xx = −
c′f
c′′ff

> 0

(indeed, c′(f)xL = −1⇒ c′f + c′′ffxf
′
x = 0.) Hence

x · d
dx

(
1− ru −

cxL

cxL+ f

)
= x · d

dx

(
−ru +

f

cxL+ f

)
= −r′ux+

−fcxL−
(
c− fc′f

) c′f
c′′ff

Lx

(cxL+ f)2 =

= − (1 + ru − ru′) ru − ru ·
(

1− ru −
1

rc

)
= − ((2− ru′) rc − 1) · ru

rc
< 0

Therefore, function 1− ru−
cxL

cxL+ f
, as function from x, decreases (with respect to x).

Recall:

Optimality: rlnu − ru −
cxL

cxL+ f
= 0

Equilibrium: 1− ru −
cxL

cxL+ f
= 0 , function 1− ru−

cxL

cxL+ f
decreases with respect to x.

Moreover, c′(f)Lx = −1 =⇒ f ′xx = −
c′f
c′′ff

> 0, hence f increases with respect to x.

Moreover, N =
L

cxL+ f
, hence N decreases with respect to x.

Therefore, the interconnection between optimal consumption (xopt) and equilibrium consumption (x∗),
optimal �xed costs (fopt) and equilibrium �xed costs (f∗), optimal mass of �rms (Nopt) and equilibrium
mass of �rms (N∗), are as in the Table.

Moreover, since

Nf =
Lf

cxL+ f

one has

(Nf)′x =
L

(cxL+ f)2 ·
(
(cxL+ f) f ′x −

((
c′xx+ c

)
L+ f ′x

)
f
)

=

= −
N2cc′f
c′′ff

· (1− Ec − rc) = −
N2cc′f
c′′ff

· (1− rln c) .

Hence
rln c < 1 =⇒ (Nf)′x > 0
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rln c = 1 =⇒ (Nf)′x = 0

rln c > 1 =⇒ (Nf)′x < 0

Therefore, the interconnection between optimal total investments (Nf)opt = Nopt ·fopt and equilibrium
total investments (Nf)∗ = N∗ · f∗ is as in the Table.

12.6 Proof of Proposition 6

One has 
rlnu − ru =

cxL

cxL+ f
c′xL = −1

N =
L

cxL+ f

Hence



(
rlnu − ru −

cxL

cxL+ f

)′
L

+

(
rlnu − ru −

cxL

cxL+ f

)′
x

∂x

∂L
+

(
rlnu − ru −

cxL

cxL+ f

)′
f

∂f

∂L
= 0(

c′xL
)′
L

+
(
c′xL

)′
x

∂x

∂L
+
(
c′xL

)′
f

∂f

∂L
= 0(

N − L

cxL+ f

)′
L

+

(
N − L

cxL+ f

)′
x

∂x

∂L
+

(
N − L

cxL+ f

)′
f

∂f

∂L
+

(
N − L

cxL+ f

)′
N

∂N

∂L
= 0

i.e. 
(
r′lnux− r′ux

)
· Ex + (1− rln c) (1− Eu) Eu · Ef = 0

1 + Ex − rc · Ef = 0

Eu − 1 + Eu · Ex + EN = 0

hence
−
(
r′lnux− r′ux

)
+
((
r′lnux− r′ux

)
rc + (1− rln c) (1− Eu) Eu

)
· Ef = 0

i.e.

Ef =
r′lnux− r′ux(

r′lnux− r′ux
)
rc + (1− rln c) (1− Eu) Eu

One has

rlnu − ru =
cxL

cxL+ f
=

1

1− Ec
=

1

1− rln c + rc

Hence
(1− rln c + rc) (rlnu − ru) = 1

Therefore (
r′lnux− r′ux

)
rc + (1− rln c) (1− Eu) Eu = − (Ec + rurc) Eu < 0

Thus

Ef = − E ′ux
(Ec + rurc) Eu

= − 1− rlnu

Ec + rurc
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Ex = rc · Ef − 1 = −(1− Eu + Eu′) rc
Ec + rurc

− 1 = −(1− rln c) EcEu
Ec + rurc

EN = 1− Eu − Eu · Ex = 1 +
(1− rlnu) rcEu
Ec + rurc

=
Ec + (1− Eu) rlnurc

Ec + rurc
=

(due to (29))

=
Ec − EcEurlnurc
Ec + rurc

=

(
(1− rln c) Eu
Ec + rurc

− 1

)
EuEc

Further, since (1− Ec) Eu = 1,

ELx = 1 + Ex = 1− (1− rln c) EcEu
Ec + rurc

=
(rlnu − 1) rc
Ec + rurc

ENf = Ef + EN = 1− (1− rlnu) (1− rln c) Eu
Ec + rurc

Finally, the signs of elasticities, presented in the Table, can be obtained directly from the formulas for
elasticities. The only thing to show is that

rlnu < 1 =⇒ rln c > 1. (62)

Indeed, (29) means

Ec =
Eu − 1

Eu
Substitute this in (28), after simple calculations, we have

Eu − 1

Eu
+ rurc > 0

i.e.
rlnu − 1 + (rln c − 1) Euru > 0

hence (62) is shown.

12.7 Proof of Proposition 7

As usual, we use the following equations for equilibrium:

ru(x)x

1− ru(x)
− f

Lc(f, α)
= 0 (63)

c′f (f, α)Lx = −1 (64)

(cf. (52) and (53)) and

p− c(f, α)

1− ru(x)
= 0 (65)

(cf. (15)). Thus

(
ru(x)x

1− ru(x)
− f

Lc(f, α)

)′
α

+

(
ru(x)x

1− ru(x)
− f

Lc(f, α)

)′
x

· ∂x
∂α

+

(
ru(x)x

1− ru(x)
− f

Lc(f, α)

)′
f

· ∂f
∂α

= 0

(
c′f (f, α)Lx

)′
α

+
(
c′f (f, α)Lx

)′
x
· ∂x
∂α

+
(
c′f (f, α)Lx

)′
f
· ∂f
∂α

= 0
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(
p− c(f, α)

1− ru(x)

)′
α

+

(
p− c(f, α)

1− ru(x)

)′
p

· ∂p
∂α

+

(
p− c(f, α)

1− ru(x)

)′
x

· ∂x
∂α

+

(
p− c(f, α)

1− ru(x)

)′
f

· ∂f
∂α

= 0

i.e.
c′α(f, α)f

Lc2(f, α)
+
r′u(x)x+ (1− ru(x)) ru(x)

(1− ru(x))2 · ∂x
∂α
−
c(f, α)− c′f (f, α)f

Lc2(f, α)
· ∂f
∂α

= 0

c′′fα(f, α)Lx+ c′f (f, α)L · ∂x
∂α

+ c′′ff (f, α)Lx · ∂f
∂α

= 0

− c′α(f, α)

1− ru(x)
+
∂p

∂α
− r′u(x)c(f, α)

(1− ru(x))2 ·
∂x

∂α
−

c′f (f, α)

1− ru(x)
· ∂f
∂α

= 0

i.e.
c′α(f, α)f

Lc2(f, α)
+

(2− ru′(x)) ru(x)

(1− ru(x))2 · x
α
· Ex/α −

c(f, α)− c′f (f, α)f

Lc2(f, α)
· f
α
· Ef/α = 0

c′′fα(f, α)Lx+ c′f (f, α)L · x
α
· Ex/α + c′′ff (f, α)Lx · f

α
· Ef/α = 0

− c′α(f, α)

1− ru(x)
+
p

α
· Ep/α −

r′u(x)c(f, α)

(1− ru(x))2 ·
x

α
· Ex/α −

c′f (f, α)

1− ru(x)
· f
α
· Ef/α = 0

i.e. (due to (63) and (65))

c′α(f, α)fα

Lc2(f, α)
+

(2− ru′(x))

1− ru(x)
· f

Lc(f, α)
· Ex/α −

c(f, α)− c′f (f, α)f

Lc2(f, α)
· f · Ef/α = 0

c′′fα(f, α)α

c′f (f, α)
+ Ex/α +

c′′ff (f, α)f

c′f (f, α)
· Ef/α = 0

−c
′
α(f, α)α

1− ru(x)
+

c(f, α)

1− ru(x)
· Ep/α −

r′u(x)xc(f, α)

(1− ru(x))2 · Ex/α −
c′f (f, α)f

1− ru(x)
· Ef/α = 0

i.e.

Ec/α +
(2− ru′(x))

1− ru(x)
· Ex/α −

(
1− Ec/f

)
· Ef/α = 0

Ec′f/α + Ex/α − rc(f, α) · Ef/α = 0

−Ec/α + Ep/α −
r′u(x)x

1− ru(x)
· Ex/α − Ec/f · Ef/α = 0

i.e. (due to (12))
(1− ru(x)) · Ec/α + (2− ru′(x)) · Ex/α − Ef/α = 0 (66)

Ex/α = rc(f, α) · Ef/α − Ec′f/α (67)

Ep/α =
r′u(x)x

1− ru(x)
· Ex/α + Ec/f · Ef/α + Ec/α (68)

hence (from (67) and (66))

Ex/α = rc ·
(
(1− ru(x)) · Ec/α + (2− ru′(x)) · Ex/α

)
− Ec′f/α

Ex/α =
− (1− ru(x)) rcEc/α + Ec′f/α

(2− ru′(x)) rc − 1
> 0 (69)
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and (from (67), using (69))

Ef/α =
Ex/α + Ec′f/α

rc
=
− (1− ru(x)) rcEc/α + Ec′f/α + ((2− ru′(x)) rc − 1) Ec′f/α

((2− ru′(x)) rc − 1) rc

Ef/α =
− (1− ru(x)) Ec/α + (2− ru′(x)) Ec′f/α

(2− ru′(x)) rc − 1
> 0 (70)

and (from (68), using (69) and (70))

Ep/α =
r′u(x)x

1− ru(x)
·
− (1− ru(x)) rcEc/α + Ec′f/α

(2− ru′(x)) rc − 1
+ Ec/f ·

− (1− ru(x)) Ec/α + (2− ru′(x)) Ec′f/α
(2− ru′(x)) rc − 1

+ Ec/α =

=

−r′u(x)xrcEc/α +
r′u(x)x

1− ru(x)
· Ec′f/α − (1− ru(x)) Ec/fEc/α + (2− ru′(x)) Ec/fEc′f/α + ((2− ru′(x)) rc − 1) Ec/α

(2− ru′(x)) rc − 1
=

=

(
−r′u(x)xrc − (1− ru(x)) Ec/f + (2− ru′(x)) rc − 1

)
Ec/α +

(
r′u(x)x

1− ru(x)
+ (2− ru′(x)) Ec/f

)
· Ec′f/α

(2− ru′(x)) rc − 1
=

(since r′u(x)x = (1 + ru(x)− ru′(x)) ru(x) and, due to (63) and (64), Ec/f =
ru(x)

ru(x)− 1
)

=

(− (1 + ru − ru′) rurc + ru + (2− ru′) rc − 1) Ec/α +

(
(1 + ru − ru′) ru

1− ru
+ (2− ru′) ·

ru
ru − 1

)
· Ec′f/α

(2− ru′) rc − 1
=

=
((− (2− 1 + ru − ru′) ru + 2− ru′) rc − (1− ru)) Ec/α + (1 + ru − ru′−2 + ru′) ·

ru
1− ru

· Ec′f/α
(2− ru′) rc − 1

=

=
((2− ru′ + ru) rc − 1) (1− ru) Ec/α − ruEc′f/α

(2− ru′) rc − 1
=

=
((2− ru′) rc − 1 + rurc) (1− ru) Ec/α − ruEc′f/α

(2− ru′) rc − 1
< 0

since (2− ru′) rc − 1 > 0, 0 < ru < 1, rc > 0, Ec/α < 0 and Ec′f/α > 0.

Further, (see (16))

ENf/α = ENf
L
/α

= Eru(x)/α = Eru(x)/x · Ex/α =
r′u(x)x

ru(x)
· Ex/α

and (using (69) and (70))

EN/α = ENf/α − Ef/α =
r′u(x)x

ru(x)
· Ex/α − Ef/α =

=
r′u(x)x

ru(x)
·
− (1− ru(x)) rcEc/α + Ec′f/α

(2− ru′(x)) rc − 1
−
− (1− ru(x)) Ec/α + (2− ru′(x)) Ec′f/α

(2− ru′(x)) rc − 1
=

=
(1 + ru(x)− ru′(x))

(
− (1− ru(x)) rcEc/α + Ec′f/α

)
+ (1− ru(x)) Ec/α − (2− ru′(x)) Ec′f/α

(2− ru′(x)) rc − 1
=
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=
(− (1 + ru(x)− ru′(x)) rc + 1) (1− ru(x)) Ec/α + (1 + ru(x)− ru′(x)− 2 + ru′(x)) Ec′f/α

(2− ru′(x)) rc − 1
=

=
(− (1 + ru(x)− ru′(x)) rc + 1) (1− ru(x)) Ec/α − (1− ru(x)) Ec′f/α

(2− ru′(x)) rc − 1
=

=

(
((1− ru(x)) rc − (2− ru′(x)) rc + 1) Ec/α − Ec′f/α

)
(1− ru(x))

(2− ru′(x)) rc − 1

Finally, the signs of elasticities, presented in the Table, can be obtained directly from the formulas for
elasticities.

12.8 Proof of Proposition 8

System of equilibrium equations:

ru (x, β)x

1− ru (x, β)
− f

Lc(f)
= 0 (71)

c′(f)Lx = −1 (72)

(c(f)xL+ f)N = L (73)

Let us calculate the total derivatives w.r.t. β:(
ru (x, β)x

1− ru (x, β)
− f

Lc(f)

)′
β

+

(
ru (x, β)x

1− ru (x, β)
− f

Lc(f)

)′
x

· ∂x
∂β

+

(
ru (x, β)x

1− ru (x, β)
− f

Lc(f)

)′
f

· ∂f
∂β

= 0

(
c′(f)Lx

)′
β

+
(
c′(f)Lx

)′
x
· ∂x
∂β

+
(
c′(f)Lx

)′
f
· ∂f
∂β

= 0

((c(f)xL+ f)N)′β + ((c(f)xL+ f)N)′x ·
∂x

∂β
+ ((c(f)xL+ f)N)′f ·

∂f

∂β
+ ((c(f)xL+ f)N)′N ·

∂N

∂β
= 0

i.e. (
ru (x, β)x

1− ru (x, β)

)′
β

+

(
ru (x, β)x

1− ru (x, β)

)′
x

· ∂x
∂β

+

(
− f

Lc(f)

)′
f

· ∂f
∂β

= 0

c′(f)L · ∂x
∂β

+ c′′(f)Lx · ∂f
∂β

= 0

c(f)LN · ∂x
∂β

+
(
c′(f)xL+ 1

)
N · ∂f

∂β
+ (c(f)xL+ f) · ∂N

∂β
= 0

i.e., using (71), (72), (73), etc.,

∂ru (x, β)

∂β
· x

(1− ru (x, β))2 +
(2− ru′ (x, β)) · ru (x, β)

(1− ru (x, β))2 · ∂x
∂β
− c(f)− fc′(f)

L (c(f))2 · ∂f
∂β

= 0

c′(f)L · ∂x
∂β

+ c′′(f)Lx · ∂f
∂β

= 0

c(f)LN · ∂x
∂β

+ (c(f)xL+ f) · ∂N
∂β

= 0

i.e.
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∂ru (x, β)

∂β
· x

(1− ru (x, β))2 +
(2− ru′ (x, β)) · ru (x, β)

(1− ru (x, β))2 · x
β
· Ex/β −

c(f)− fc′(f)

L (c(f))2 · f
β
· Ef/β = 0

c′(f)L · x
β
· Ex/β + c′′(f)Lx · f

β
· Ef/β = 0

c(f)LN · x
β
· Ex/β + (c(f)xL+ f) · N

β
· EN/β = 0

i.e.

∂ru (x, β)

∂β
· β

(1− ru (x, β))2 +
(2− ru′ (x, β)) · ru (x, β)

(1− ru (x, β))2 · Ex/β − (1− Ec(f)) · f

c(f)xL
· Ef/β = 0

Ex/β − rc(f) · Ef/β = 0

Ex/β +
c(f)xL+ f

c(f)Lx
· EN/β = 0

i.e.

Eru/β (x, β) · ru (x, β) + (2− ru′ (x, β)) · ru (x, β) · Ex/β − (1− ru (x, β)) · f

c(f)xL
· Ef/β = 0

Ex/β − rc(f) · Ef/β = 0

Ex/β + (1− Ec(f)) · EN/β = 0

i.e.

Eru/β (x, β) + (2− ru′ (x, β)) · Ex/β −
1− ru (x, β)

ru (x, β)
· f

c(f)xL
· Ef/β = 0

Ex/β − rc(f) · Ef/β = 0

Ex/β + (1− Ec(f)) · EN/β = 0

i.e.

Eru/β (x, β) + (2− ru′ (x, β)) · Ex/β − Ef/β = 0

Ex/β − rc(f) · Ef/β = 0

Ex/β + (1− Ec(f)) · EN/β = 0

i.e.

Ef/β = −
Eru/β (x, β)

(2− ru′ (x, β)) · rc (f)−1
< 0

Eq/β = ELx/β = Ex/β = rc (f) · Ef/β < 0

EN/β = −
Ex/β

1− Ec(f)
= − rc(f)

1− Ec(f)
· Ef/β > 0

Moreover,
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E p−c
p
/β = ENf

L
/β

= ENf/β = EN/β+Ef/β =

(
1− rc(f)

1− Ec(f)

)
·Ef/β =

1− Ec(f)− rc(f)

1− Ec(f)
·Ef/β =

1− rln c(f)

1− Ec(f)
·Ef/β

Finally,

∂p

∂β
=

(
c(f)

1− ru (x, β)

)′
β

+

(
c(f)

1− ru (x, β)

)′
x

· ∂x
∂β

+

(
c(f)

1− ru (x, β)

)′
f

· ∂f
∂β

=

=

∂ru (x, β)

∂β
· c(f)

(1− ru (x, β))2 +
r′u (x, β) c(f)

(1− ru (x, β))2 ·
x

β
· Ex/β +

c′(f)

1− ru (x, β)
· f
β
· Ef/β =

=


∂ru (x, β)

∂β
· β

ru (x, β)
+
r′u (x, β)x

ru (x, β)
· Ex/β +

1− ru (x, β)

ru (x, β)
· c
′(f)f

c(f)
· Ef/β

 · ru (x, β) c(f)

(1− ru (x, β))2 β
=

=

(
Eru/β (x, β) +

r′u (x, β)x

ru (x, β)
· Ex/β +

1− ru (x, β)

ru (x, β)
· Ec · Ef/β

)
· ru (x, β) c(f)

(1− ru (x, β))2 β
=

=

(
Eru/β (x, β) +

r′u (x, β)x

ru (x, β)
· rc (f) · Ef/β +

1− ru (x, β)

ru (x, β)
· Ec · Ef/β

)
· ru (x, β) c(f)

(1− ru (x, β))2 β
=

=

(
Eru/β (x, β) +

(
r′u (x, β)x

ru (x, β)
· rc (f) +

1− ru (x, β)

ru (x, β)
· Ec
)
· Ef/β

)
· ru (x, β) c(f)

(1− ru (x, β))2 β
=

=

(
Eru/β (x, β) +

(
r′u (x, β)x

ru (x, β)
· rc (f) +

1− ru (x, β)

ru (x, β)
· Ec
)
· Ef/β

)
· ru (x, β) c(f)

(1− ru (x, β))2 β
=

=

(
Eru/β (x, β) +

(
r′u (x, β)x

ru (x, β)
· rc (f)− c(f)

c′(f)f
· Ec
)
· Ef/β

)
· ru (x, β) c(f)

(1− ru (x, β))2 β
=

=

(
Eru/β (x, β) +

(
r′u (x, β)x

ru (x, β)
· rc (f)− 1

)
· Ef/β

)
· ru (x, β) c(f)

(1− ru (x, β))2 β
=

=

(
Eru/β (x, β)−

(
r′u (x, β)x

ru (x, β)
· rc (f)− 1

)
·

Eru/β (x, β)

(2− ru′ (x, β)) · rc (f)− 1

)
· ru (x, β) c(f)

(1− ru (x, β))2 β
=

=

1−

r′u (x, β)x

ru (x, β)
· rc (f)− 1

(2− ru′ (x, β)) · rc (f)− 1

 · Eru/β (x, β) ru (x, β) c(f)

(1− ru (x, β))2 β
=

=

(
1− (1 + ru (x, β)− ru′ (x, β)) · rc (f)− 1

(2− ru′ (x, β)) · rc (f)− 1

)
·
Eru/β (x, β) ru (x, β) c(f)

(1− ru (x, β))2 β
=

=

(
(2− ru′ (x, β)) · rc (f)− (1 + ru (x, β)− ru′ (x, β)) · rc (f)

(2− ru′ (x, β)) · rc (f)− 1

)
·
Eru/β (x, β) ru (x, β) c(f)

(1− ru (x, β))2 β
=
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=
Eru/β (x, β) ru (x, β) c(f)rc (f)

((2− ru′ (x, β)) · rc (f)− 1) (1− ru (x, β))β
= −

Eru/β (x, β) rc (f) fc′(f)

((2− ru′ (x, β)) · rc (f)− 1)β
.

Hence

Ep/β =
∂p

∂β
·β
p

= −
Eru/β (x, β) rc (f) fc′(f)

((2− ru′ (x, β)) · rc (f)− 1)
·1− ru (x, β)

c(f)
= −

(1− ru (x, β)) Eru/β (x, β) rc (f) Ec (f)

(2− ru′ (x, β)) · rc (f)− 1
> 0.
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13 Appendix C: The Table of the notations

In this Section we present the Table of all the notations and their de�nitions.

notation de�nition

L the (big) number of identical consumers/workers (market size)

[0, N ] an endogenous interval of identical �rms producing varieties of some �di�erentiated good�

N the endogenous mass of �rms, or the scope (the interval) of varieties

xi consumption of i-th variety by any consumer, i ∈ [0, N ]

X X = (xi)i≤N , X : [0, N ]→ R+, an in�nite-dimensional consumption vector

pi the price of i− th variety by any consumer, i ∈ [0, N ]

x consumption of any variety by any consumer, in symmetric case (xi = x ∀i ∈ [0, N ])

p the price of any variety by any consumer, in symmetric case (pi = p ∀i ∈ [0, N ])

Eg(z) Eg(z) ≡
zg′(z)

g(z)
, the elasticity

rg(z) rg(z) ≡ −
zg′′(z)

g′(z)
, the Arrow-Pratt measure of concavity, rg(z) ≡ −Eg′(z)

u(·) the Bernoulli utility function, u′(x) > 0, u′′(x) < 0

RLV �relative love for variety�, ru(x) ≡ −xu
′′(x)

u′(x)
λ the Lagrange multiplier of the budget constraint (the marginal utility of income)

R&D the Research and Development activities

q q = L · x producing of a �rm (�rm size)

f �xed costs of a �rm (investments in R&D)

c (f) marginal costs, �innovation function�, c′(f) < 0

FOC First Order Condition

SOC Second Order Condition

IED Increasing Elasticity of Demand (the case r′u (x) > 0)

DED Decreasing Elasticity of Demand (the case r′u (x) < 0)

DEU Decreasing Elasticity of Utility (the case E ′u (x) < 0)

IEU Increasing Elasticity of Utility (the case E ′u (x) > 0)

CES Constant Elasticity of Substitution (u (x) is CES-function ⇐⇒ r′u (x) = E ′u (x) = 0 )

α in marginal costs c = c(f, α), a technological innovation parameter, ∂c
∂α < 0, ∂2c

∂f∂α < 0

β in parameterized utility u = u (x, β), a parameter of inter-industry comparisons, ∂ru(x,β)
∂β > 0

γ(i) continuous density of distribution of heterogeneous abilities, de�ned on [0,∞)

Γ(t) Γ(t) =
´ t

0 γ(i)di is the cumulative probability
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