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1 Introduction

Behavior of individual agents is affected by that of their peers.

Education, crime, labor markets, fertility, participation to welfare pro-

grams, etc.

Detection and measure of peer effects: difficult exercise.

Peer effects: an average intra-group externality that affects identically

all the members of a given group.

Group boundaries: arbitrary and at a quite aggregate level



Peer effects in crime: neighborhood level using local crime rates

Peer effects in school: classroom or school level using average school

achievements

This paper: smallest unit of analysis for cross influences: the dyad (two-

person group)

Collection of dyadic bilateral relationships: social network

Theory and Empirics



Theory: Explicit network analysis of peer effects

Each agent belongs to a network of peer influences, Ex ante hetero-

geneity

Payoffs are interdependent and agents choose their levels of activity

simultaneously

Nash equilibrium of this peer effect game

Nash equilibrium proportional to Katz-Bonacich network centrality



Katz-Bonacich: counts, for each agent, the total number of direct and

indirect paths of any length in the network

Paths are weighted by a geometrically decaying factor (with path length).

Katz-Bonacich centrality: not parameter free (depends on network topol-

ogy and on decaying factor).



Empirics: Test predictions of our peer-effect model

Dataset of friendship networks in the United States from the National

Longitudinal Survey of Adolescent Health (AddHealth).

Role of network location in education.

Empirical issues: endogenous network formation, unobserved individual,

school and network heterogeneity.

Richness of the information provided by the AddHealth data

Use of both within and between network variations



11,491 pupils distributed over 181 networks.

Direct estimation of the model:

A one-standard deviation increase in the Katz-Bonacich index translates

into roughly 7 percent of a standard deviation in education outcome.



Influence of peers on education outcomes

Standard approach: instrumental variables (e.g. Evans et al., 1992)

or a natural experiment (e.g. Angrist and Lavy, 1999; Sacerdote, 2001;

Zimmerman, 2003)

Nearly no studies that have adopted a more structural approach to test

a specific peer effect model in education

(Glaeser et al. (1996) peer effecs in criminal behavior).



Here:

Stress the role of the structure of social networks in explaining individual

behavior.

Build a theoretical model of peer effects

Direct empirical test of our model on the network structure of peer

effects

We characterize the exact conditions on the geometry of the peer net-

work, so that the model is fully identified



2 A network model of peer effects

Population of agents N = {1, ..., n}.

The network Network g, gij = 1 if i and j are direct friends, and

gij = 0, otherwise.

Individual i exerts a direct peer influence on j if and only if gij = 1.

gij = gji and gii = 0.



y0i effort of individual i absent of any peer influence.

zi effort of individual i whose returns depend on others’ peer efforts.

Each agent i selects both efforts y0i ≥ 0 and zi ≥ 0.



Utility function
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i’s friends (average) observable heterogeneity

xmi set ofM variables accounting for observable differences in individual,
neighborhood and school characteristics of individual i.



Bilateral influences, for i 6= j:

∂2ui(y
0, z;g)

∂zi∂zj
= φgij ≥ 0. (1)

When i and j are direct friends, the cross derivative is φ > 0 and reflects

a strategic complementarity in efforts.



Example: 3 agents

t t t
2 1 3

Figure 1. Three agents on a line.

Through the interaction with the central agent 1, peripheral agents end

up reaping complementarities indirectly from each other.

Equilibrium decisions in each dyad cannot be analyzed independently of

each other.

Each dyad exerts a strategic externality on the other one, and the equi-

librium effort level of each agent reflects this externality, and the role

each agent may play as a driver for the externality.



3 Analysis of the model

The Katz-Bonacich network centrality To each network g, we asso-

ciate its adjacency matrix G = [gij].

Symmetric zero-diagonal square matrix that keeps track of the direct

connections in g.

The kth power Gk = G(k times)... G of the adjacency matrix G keeps

track of indirect connections in g.

The coefficient g
[k]
ij in the (i, j) cell of Gk gives the number of paths of

length k in g between i and j.

Not the shortest possible route between two agents



Example Network g with three individuals (star)

t t t
2 1 3

Figure 1

Adjacency matrix :

G =

⎡⎢⎣ 0 1 1
1 0 0
1 0 0

⎤⎥⎦



k ≥ 1

G2k =

⎡⎢⎣ 2
k 0 0

0 2k−1 2k−1

0 2k−1 2k−1

⎤⎥⎦ and G2k+1 =

⎡⎢⎣ 0 2k 2k

2k 0 0

2k 0 0

⎤⎥⎦

G3 =

⎡⎢⎣ 0 2 2
2 0 0
2 0 0

⎤⎥⎦

G3: two paths of length three between 1 and 2: 12 → 21 → 12 and

12→ 23→ 32.

no path of length three from i to i



The vector of Katz-Bonacich centralities:

b(g, φ) = φG1+ φ2G21+ φ3G31+ · · · =
+∞X
k=0

φkGk · (φG1) .

1 vector of ones.

G1 vector of node connectivities

Gk1 give the total number of paths of length k that emanate from the

corresponding network node.

φ small enough so that this infinite sum is well-defined.



Example

t t t
2 1 3

Figure 1

Adjacency matrix :

G =

⎡⎢⎣ 0 1 1
1 0 0
1 0 0

⎤⎥⎦

G1 =

⎡⎢⎣ 21
1

⎤⎥⎦ G31 =

⎡⎢⎣ 42
2

⎤⎥⎦



Observe
+∞X
k=0

φkGk = (I− φG)−1

I identity matrix.

Vector Katz-Bonacich centralities:

b(g, φ) = (I−φG)−1 · (φG1) . (2)

Katz-Bonacich centrality of a given node is zero when the network is

empty.



Katz-Bonacich centrality is null when φ = 0

Katz-Bonacich centrality increasing and convex with φ.

Katz-Bonacich centrality bounded from below by φ times the node con-

nectivity, that is, bi(g, φ) ≥ φgi.

Katz-Bonacich centrality well-defined for low enough values of φ, so that

the infinite sum 1+ φG1+ φ2G21+ · · · converges to a finite value.

The exact strict upper bound for the scalar φ is given by the inverse of

the largest eigenvalue of G (Debreu and Herstein, 1953).



Example.

t t t
2 1 3

Figure 1

Largest eigenvalue of G is 2, Exact strict upper bound for φ is 1/2.

The vector of Bonacich network centralities is:

b (g, φ) =

⎡⎢⎣ b1 (g, φ)
b2 (g, φ)
b3 (g, φ)

⎤⎥⎦ = φ

1− 2φ2

⎡⎢⎣ 2 + 2φ1 + 2φ
1 + 2φ

⎤⎥⎦ .



Equilibrium behavior Nash equilibrium

max
y0i ,zi
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Best reply function for each i = 1, ..., n:

y0∗i (x) = θi (x) =
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Individual outcome (educational achievement) is the sum of these two

different efforts:

y∗i (x,g) = y0∗i (x)| {z }
idiosyncratic

+ z∗i (g)| {z }
peer effect

.

We can decompose additively individual behavior into an exogenous

part and an endogenous peer effect component that depends on the

individual under consideration:



Denote by ω(g) the largest eigenvalue of the adjacency matrixG =
h
gij
i

of the network.

Proposition 3.1 Suppose that φω(g) < 1. Then, the individual equilib-

rium outcome is uniquely defined and given by:

y∗i (x,g) = θi (x) +
μ

φ
bi (g, φ) . (3)

Rewriting (3) as

y∗i (x,g) =

Ã
1 +

μ

φ

bi (g, φ)

θ0i (x)

!
y0∗i (x) ,

Peer influence acts as a multiplier on the behavior of the isolated indi-

vidual.



Condition φω(g) < 1: Network complementarities must be small enough

than own concavity.

Network complementarities: measured by the compound index φω(g)

φ intensity of each non-zero cross effect

ω(g) pattern of such cross effects.

This prevents multiple equilibria to emerge and, in the same time, rules

out corner solutions.

Bonacich centrality: right network index to account for equilibrium be-

havior.



Example. Consider again the network g in Figure 1.

t t t
2 1 3

Figure 1

When φ < 1/2, the unique Nash equilibrium is:

y∗1 = y01 + μ

Ã
2 + 2φ

1− 2φ2

!

y∗2 = y02 + μ

Ã
1 + 2φ

1− 2φ2

!

y∗2 = y03 + μ

Ã
1 + 2φ

1− 2φ2

!



Alternative formulation of the model Our utility function: each indi-
vidual i chooses two different effort levels, y0i and zi.

Assume utility function with only one type of effort zi:

ui(z;g) = μgizi −
1

2
z2i + φ

nX
j=1

gijzizj. (4)

Best reply function for each individual i

z∗i (g) = μgi + φ
nX

j=1

gijzj

When φω(g) < 1

z∗i (g) =
μ

φ
bi (g, φ)



Educational achievement of each individual i:

y∗i (x,g) = θi(x) + z∗i (g)

θi(x) contextual effects



3.1 Discussion

What happens when the condition φω(g) < 1 does not hold?

Theory

(i) We cannot characterize the Nash equilibrium since the Katz-Bonacich

centrality measure is not anymore defined;

(ii) The existence of equilibrium becomes an issue since the strategy

space is unbounded. To obtain existence, we need to bound the strategy

space in some arbitrary way.

(iii) Even if existence is guaranteed, uniqueness does not always follows.

In fact, as it is well known in the literature on supermodular games,

multiple equilibria are rather the rule than the exception.



Empirical analysis

Difficult to interpret the results.

Multiple equilibria

No centrality measure and thus unable to distinguish between the effects

of individual’s network location and individual’s idiosyncratic character-

istics on educational achievements.

Only 9 percent of the networks in our database violate this condition

473 discarded people (descriptive statistics on these discarded people

do not differ significantly from those on the whole sample).



4 Data

Unique database on friendship networks from the National Longitudinal

Survey of Adolescent Health (AddHealth).

Adolescents’ behavior in the United States: Data on students in grades

7-12 from a nationally representative sample of roughly 130 private and

public schools in years 1994-95.

Respondents’ demographic and behavioral characteristics, education,

family background and friendship.



Friendship networks

Friendship information is based upon actual friends nominations.

Pupils were asked to identify their best friends from a school roster (up

to five males and five females).

The limit in the number of nominations is not binding.

Less than 1% of the students in our sample show a list of ten best

friends.

Less than 3% a list of five males and roughly 4% name five females.



On average, they declare to have 5.48 friends with a small dispersion

around this mean value (the standard deviation is equal to 1.29).

The corresponding figures for male- and female-friends are 2.78 (with

standard deviation equal to 1.85) and 3.76 (with standard deviation

equal to 1.04).



A link exists between two friends if at least one of the two individuals

has identified the other as his/her best friend (undirected networks)

We also consider directed networks: 14% of relationships are not recip-

rocal.

For each school, we obtain all the networks of (best) friends.

Education achievements

Grade achieved by each student in mathematics, history and social stud-

ies and science, ranging from D or lower to A, the highest grade (re-

coded 1 to 4).

School performance index



Final sample: 11,964 pupils distributed over 199 networks.

Descriptive statistics



Table 1: Descriptive statistics

(11,964 pupils; 199 networks)



Mean St. Dev. Min Max

Female 0.41 0.35 0 1

Black or African American 0.17 0.31 0 1

Other races 0.12 0.15 0 1

Age 15.29 1.85 10 19

Religion practice 3.11 1.01 1 4

Health status 3.01 1.77 0 4

School attendance 3.28 1.86 1 6

Student grade 9.27 3.11 7 12

Organized social participation 0.62 0.22 0 1

Motivation in education 2.23 0.88 1 4

Relationship with teachers 0.12 0.34 0 1

Social exclusion 2.26 1.81 1 5

School attachment 2.59 1.76 1 5

Parental care 0.69 0.34 0 1

Household size 3.52 1.71 1 6

Two married parent family 0.41 0.57 0 1

Single parent family 0.23 0.44 0 1

Public assistance 0.12 0.16 0 1

Mother working 0.65 0.47 0 1



Mean St. Dev. Min Max

Parental education 3.69 2.06 1 5

Parent age 40.12 13.88 33 75

Parent occupation manager 0.11 0.13 0 1

Parent occupation professional or technical 0.09 0.21 0 1

Parent occupation office or sales worker 0.26 0.29 0 1

Parent occupation manual 0.21 0.32 0 1

Parent occupation military or security 0.09 0.12 0 1

Parent occupation farm or fishery 0.04 0.09 0 1

Parent occupation retired 0.06 0.09 0 1

Parent occupation other 0.11 0.16 0 1



Table 1: Descriptive statistics (continued)

Mean St. Dev. Min Max

Neighborhood quality 2.99 2.02 1 4

Residential building quality 2.95 1.85 1 4

Neighborhood safety 0.51 0.57 0 1

Residential area suburban 0.32 0.38 0 1

Residential area urban - residential only 0.18 0.21 0 1

Residential area commercial properties - retail 0.12 0.15 0 1

Residential area commercial properties - industrial 0.13 0.18 0 1

Residential area type other 0.19 0.25 0 1

Friend attachment 0.49 0.54 0 1

Friend involvement 1.88 1.56 0 3

Friend contacts 0.89 0.12 0 1

Physical development 3.14 2.55 1 5

Self esteem 3.93 1.33 1 6



4.1 Descriptive evidence

Mean and the standard deviation of network size are 60.42 and 24.48,
respectively.
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Figure 2. The empirical distribution of adolescent networks



Smallest network in our sample.

Figure 3. Smallest network of adolescents (n = 16)

The largest network in our sample is almost seven times bigger and has

107 members.



5 Empirical strategy

Proposition 3.1: Actual empirical relationship between bi (g, φ) and the

observed effort level y∗i .

Maximally connected components:

Two agents in a network are either directly linked or indirectly linked

through a sequence of intermediate agents (connectedness).

Two agents in different networks cannot be connected through any such

sequence (maximality).



gκ network encompassing nκ different individuals.

K such networks in the economy.
PK
κ=1 nκ = n.



Theory:

yi (x,g) =
MX

m=1

xmi +
1

gi

MX
m=1

nX
j=1

gij x
m
j| {z }

idiosyncratic

+ zi (x,g)| {z }
peer effect

.

zi = μgi + φ
nX

j=1

gijzj, i = 1, ..., n

Empirical counterpart

yi,κ =
MX

m=1

βmx
m
i,κ +

1

gi,κ

MX
m=1

nκX
j=1

γmgij,κx
m
j,κ + ηκ + εi,κ, (5)

εi,κ = μgi,κ + φ
nκX
j=1

gij,κεj,κ + υi,κ, i = 1, ..., n; κ = 1, ...,K,



ηκ is an (unobserved) network-specific component (constant over indi-

viduals in the same network)

εi,κ residual of individual i’s level of activity in the network g that is not

accounted for neither by individual heterogeneity and contextual effects

nor by (unobserved) network-specific components.

Pnκ
j=1 gij,κεj,κ is the spatial lag term and φ is the spatial autoregressive

parameter.

Matrix notation:

y = Xβ +DGXγ + η + ε

ε = μG1+ φGε+ ν,



Our model is a variation of the Anselin (1988) spatial error model.

Using the Maximum Likelihood approach (see, e.g. Anselin, 1988), we

estimate jointly bβ, bγ, bφ, bμ.



These values: measure the relative importance of

individual characteristics, bβ1, ..., bβm (e.g. parental education, school

and neighborhood quality),

contextual effects, bγ1, ..., bγm (e.g. average parental education of each

individual’s best friends, etc.),

the individual Katz-Bonacich centrality index, bφ and bμ,
in shaping individuals’ behavior (equation (3) in Proposition 3.1).



5.1 Identification of peer effects

Assessment of the effects of peer pressure on individual behavior, i.e.

the identification of endogenous social effects

Typically characterized by econometric issues

First problem: The endogenous sorting of individuals into groups

Second problem: The reflection problem (Manski, 1993).



First problem: The endogenous sorting of individuals into groups

The role of network fixed effects

Individuals sort into groups non-randomly.

If the variables that drive this process of selection are not fully observ-

able, potential correlations between (unobserved) group-specific factors

and the target regressors are major sources of bias.

Use of network fixed effects (also referred to as correlated effects or

network unobserved heterogeneity)



Assume that agents self-select into different groups in a first step, and

that link formation takes place within groups in a second step.

If link formation is uncorrelated with the observable variables, this two-

step model of link formation generates network fixed effects.

Assuming additively separable group heterogeneity, a within group spec-

ification is able to control for these correlated effects.

We use the model specification (5), which has a network-specific com-

ponent ηκ of the error term, and adopt a traditional (pseudo) panel

data fixed effects estimator, namely, we subtract from the individual-

level variables the network average.

Network fixed effects estimation allows us to distinguish endogenous

effects from correlated effects.



Table 2 reports the estimated correlations between individual and net-

work averages of variables that are commonly believed to induce self-

selection into teenagers’ friendship group, once the influence of a variety

of other factors and network-fixed effects are washed out.

The estimated correlation coefficients reported in Table 2 are not sta-

tistically significant for all variables. This indicates that teenagers are

not clustered by any of the attributes considered.



Table 2. Correlation between individual and network-level

characteristics



Variable

Parental education
-0.0719

(0.0649)

Parental care
-0.0506
(0.0602)

Mathematics score
0.1481

(0.1901)

Motivation in education
0.1329

(0.1505)

School attachment
-0.0507
(0.0499)

Social exclusion
-0.1032
(0.1344)

Individual socio-demographic variables yes

Family background variables yes

Protective factors yes

Residential neighborhood variables yes

Contextual effects yes

School fixed effects yes



Second problem: The reflection problem (Manski, 1993).

The role of peer groups with individual level variation

Network fixed effects: does not necessary estimate the causal effect of

peers’ influence on individual behavior.

In a peer group everyone’s behavior affects the others, so that we cannot

distinguish if a group member’s action is the cause or the effect of peers’

influence: reflection problem (Manski, 1993).

Here: the reference group is the number of friends each individual has

and groups do overlap.

Because peer groups are individual specific, this issue is eluded.



The reduced-form equation corresponding to the spatial error term in

(5) is, in matrix notation:

ε = μ [I− φG]−1G1+ [I− φG]−1 ν. (6)

Peer effects are identified if the structural parameters (μ, φ) uniquely

determine the reduced-form coefficients in (6).

Bramoullé et al. (2006) provide general results on the identification of

peer effects through social networks via variations of the linear-in-means

model

Here we use a similar approach.



Proposition 5.1 Suppose that φω(g) < 1 and μ 6= 0. Peer effects are

identified if and only if g
[2]
i /gi 6= g

[2]
j /gj for at least two agents i and j.

Peer effects are identified if we can find two agents in the economy that

differ in the average connectivity of their direct friends.

This a simple property of the network, that amounts to checking that

the 2× n matrix with column vectors G1 and G21 is of rank two.



G1 = [gi] is the vector of node connectivities

G21 =
∙
g
[2]
i

¸
gives the total number of two-link away contacts in the

network.

g
[2]
i /gi is the average connectivity of agent i’s direct contacts.

Regular networks: Identification fails.

In our data, no network is regular and the identification requirement is

always satisfied.

Peer-groups are individual specific and individuals belong to more than

one group.



The role of specific controls

Proxies for typically unobserved individual characteristics that may be

correlated with our variable of interest.

More self-confident and (very likely) more successful students at school

are contacted by a larger number of friends, thus showing a higher value

of the Katz-Bonacich measure.

Controls for differences in leadership propensity across adolescents: In-

dicator of self-esteem, indicator of the level of physical development

compared to the peers.

Capture differences in attitude towards education and parenting: Indi-

cators of the student’s motivation in education and parental care.



Existence of possible correlations between our centrality measure and

unobservable school characteristics

School fixed effects (i.e. school dummies).



6 Empirical results

6.1 The Katz-Bonacich network centrality index

Model (5) is estimated using the Maximum Likelihood approach.



Table 3a: Model (5) Maximum Likelihood estimation results on key

variables

Dependent variable: school performance index



ML (with network fixed effects)

Number of best friends (μ) 0.0314**

(0.0149)

Peer effects (φ) 0.5667***

(0.1433)

Individual socio-demographic variables yes

Family background variables yes

Protective factors yes

Residential neighborhood variables yes

Contextual effects yes

School fixed effects yes

R2 = 0.8987
Notes:

- Number of observations: 2,079,871 (11,491pupils, 181networks)

- Regressions are weighted to population proportions

- Standard errors in parentheses.
Coefficients marked with one (two) [three] asterisks

are significant at 10 (5) [1] percent level



Estimated μ and φ are both positive and highly statistically significant.

Calculate the Katz-Bonacich measure by fixing the value of φ at the

point estimate bφ.
Derived Katz-Bonacich measures range from 0.32 to 3.48, with an av-

erage of 1.65 and a standard deviation of 2.79.

The estimated impact of this variable on education outcomes that is

predicted by the theory, i.e. bμ/bφ is statistically significant.
A one-standard deviation increase in the Katz-Bonacich index translates

into roughly 7 percent of a standard deviation in education outcome

This effect is about 17 percent for parental education.



7 Directed networks

So far undirected networks, i.e. we have assumed that friendship rela-

tionships are reciprocal, gij,κ = gji,κ.

14 percent of relationships in our dataset are not reciprocal.

Wasserman and Faust (1994, pages 205-210) define the Katz-Bonacich

centrality measure for directed networks.

In a directed graph, a node (here an individual) has two distinct ends: a

head (the end with an arrow) and a tail. Each end is counted separately.

The sum of head endpoints count toward the indegree and the sum of

tail endpoints count toward the outdegree.



Formally, we denote a link from i to j as gij = 1 if j has nominated i

as his/her friend, and gij = 0, otherwise.

The indegree of student i, denoted by g+i , is the number of nominations

student i receives from other students, that is g+i =
P
j gij.

The outdegree of student i, denoted by g−i , is the number of friends
student i nominates, that is g−i =

P
j gji.

We consider only the indegree to define the Katz-Bonacich centrality

measure.

Consider the following directed network:



1 2

4 3

Adjacency matrix, which takes into indegrees only, is equal to:

G =

⎡⎢⎢⎢⎣
0 0 0 0
1 0 0 1
1 1 0 0
1 0 0 0

⎤⎥⎥⎥⎦

Adjacency matrix G = [gij] is now asymmetric.



We can now define the Katz-Bonacich centrality measure b(g, φ) exactly

as before.

Theoretical analysis unchanged since, in the proof of Theorem ?? (and

thus of Proposition 3.1), the symmetry of G does not play any explicit

role. In fact, the Bonacich-Nash linkage holds for any asymmetric matrix

G, under the condition φω(g) < 1.

Table 3b: Model (5) Maximum Likelihood estimation results on key

variables

Dependent variable: school performance index



Undirected networks Directed networks

Number of best friends (μ) 0.0314** 0.0323**

(0.0149) (0.0152)

Peer effects (φ) 0.5667*** 0.5505***

(0.1433) (0.1247)

Individual socio-demographic variables yes yes

Family background variables yes yes

Protective factors yes yes

Residential neighborhood variables yes yes

Contextual effects yes yes

School fixed effects yes yes

R2 0.8987 0.8905

Notes:

- Number of observations: 2,079,871 (11,491 pupils, 181 networks)

- Control variables are those listed in Appendix 3.
- Regressions are weighted to population proportions

- Standard errors in parentheses.
Coefficients marked with one (two) [three] asterisks

are significant at 10 (5) [1] percent level



Katz-Bonacich measure still statistically significant and only sligthly

lower in magnitude (5.6 percent versus 7 percent).



7.1 An alternative measure of network unit centralities

Two dimensions of centrality, connectivity and betweenness.

Bonacich centrality is an index of connectivity since it counts the number

of any path stemming from a given node, not just optimal paths.



Degree centrality The individual-level degree centrality is simply each

individual’s number of direct friends:

δi(gκ) = gi =
nX

j=1

gij

To compare networks of different sizes, this measure is normalized to be

in an interval from 0 to 1, where values 0 and 1 indicate the smallest

and the highest possible centrality.

δ∗i (gκ) =
gi

nκ − 1
=

Pn
j=1 gij

nκ − 1

In our data, the normalized degree centrality index δ∗i (gκ) has a mean
equal to 0,35 and a standard deviation equal to 0,18.



Closeness centrality The standard measure of centrality according to

closeness of individual i is given by:

ci(gκ) =
1P

j dij,κ

where dij is the geodesic distance (length of the shortest path) between

individuals i and j.

As a result, the closeness centrality of individual i is the inverse of the

sum of geodesic distances from i to the n−1 other individuals (i.e. the
reciprocal of its “farness”).

Compared to degree centrality, the closeness measure takes into ac-

count not only direct connections among individuals but also indirect

connections.

Compared to the Katz-Bonacich centrality, the closeness measure as-

sumes a weight of one to each indirect connection.



Relative closeness centrality measure as:

c∗i (gκ) =
nκ − 1P
j dij,κ

where nκ−1 is the maximum possible distance between two individuals

in network κ. This measure takes value between 0 and 1.

The mean and the standard deviation in our data of this normalized

index are 0.49 and 0.27.



Betweenness centrality measure of agent i in a network component gκ

fi(gκ) =
X
j<l

# of shortest paths between j and l through i in gκ

# of shortest paths between j and l in gκ

where j and l denote two given agents in gκ.

For undirected networks, a normalized version of this measure is:

f∗i (gκ) =
fi(gκ)

(nκ − 1) (nκ − 2) /2
,

where nκ is the size of the network gκ.

Betweenness is a parameter-free network measure.

In our data, the normalized betweenness measure f∗i has a mean equal
to 0.45 and a standard deviation equal to 0.51.



Table 4. Explanatory power of unit centrality measures

Dependent variable: school performance index



OLS OLS OLS

Degree centrality 0.2508* - -

(0.1475)

Closeness centrality - 0.2892 -

(0.2599)

Beetweenness centrality - - 0.0621

(0.0698)

Individual socio-demographic variables yes yes yes

Family background variables yes yes yes

Protective factors yes yes yes

Residential neighborhood variables yes yes yes

Contextual effects yes yes yes

School fixed effects yes yes yes

R2 0.7958 0.8202 0.8001

Notes:

- Number of observations: 2,079,871 (11,491 pupils, 181 networks)

- Control variables are those listed in Appendix 3.
- Network fixed-effects OLS estimators are reported. They are

within-group estimates where individuals are grouped by networks

- Regressions are weighted to population proportions



Out of the three measures, only degree centrality shows a statistically

slighly significant impact (i.e., at the 10% significance level).

When such an effect is translated in terms of standard deviations, its

impact on educational outcomes is not even one third of the effect ex-

erted by the Katz-Bonacich centrality index (roughly 2.1 percent versus

7 percent).

Two main explanations

1) Bonacich centrality is not an arbitrary network measure but results

from a positive analysis that maps network topology to equilibrium be-

havior.

2) Betweenness centrality is a parameter-free network index. It only

depends on the network geometry.



8 Peer effects and network structure

Relationship between peer effects and the network topology.

Estimate model (5) for each network g separately, thus using within

network variation only.

Obtain K different estimates of φ: bφ1, ..., bφK.
The estimated value bφκ measures the strength of each existing bilateral
influence in the network g.

The estimated values, bφ1, ..., bφK, vary widely across the K = 181

school-peer networks.



Network density is the fraction of ties present in a network over all

possible ones. It ranges from 0 to 1 as networks get denser.

Network asymmetry is measured using the variance of connectivities.

We normalize it, so that it reaches 1 for the most asymmetric network

in the sample.

Network redundancy is the fraction of all transitive triads over the total

number of triads. It measures the probability with which two of i’s

friends know each other.

Redundancy, or clustering, is much higher in social networks than in

randomly generated graphs. Again, we normalize it.
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Figure 4a: Density in education networks

The strength of bilateral influences increases steadily with network den-

sity for low values, and remains roughly unchanged for higher values.

Therefore, richer networks are a sign of stronger dyadic cross effects, at

least until roughly 60% of all possible networks links are created.
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Figure 4b: Asymmetry in education networks

Network asymmetry has a non-trivial impact on the intensity of peer

effects. Highly distributed and symmetric networks are compatible with

both very low and very high values of the peer-to-density ratio, while

highly centralized and asymmetric networks are always synonymous of

an average value of peer effects.
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Figure 4c: Redundancy in education networks

Figure 4c: link redundancy, or clustering, has a strong positive impact

on the strength of bilateral influences above a minimum threshold value.


