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Purpose

Theoretical and empirical investigation

of the role of peers in criminal activities

using a network perspective

Policy Implications: Brute Force versus Targeting Criminals



Motivation

Growing awareness that social context matters for individual outcomes

Observation that many individual outcomes vary much more between

social groups than within them

Theoretically: models of social interactions are widely used

Empirically: convincing tests of such models are still quite limited

• identification and measure of such peer effects is a quite difficult

exercise

• appropriate data sets difficult to find



Policy Implications:

Brute Force (Becker) versus Targeting Criminals (Social interactions)

Concentrating efforts by targeting the “most active” criminals because

of the feedback effects or “social multipliers” at work

(Sah, 1991; Kleiman, 1993, 2009; Glaeser et al., 1996; Rasmussen,

1996; Schrag and Scotchmer, 1997; Verdier and Zenou, 2004; Rogers

and Zenou, 2010).

As the fraction of individuals participating in a criminal behavior in-

creases, the impact on others is multiplied through social networks.

Thus, criminal behaviors can be magnified, and interventions can be-

come more effective.



Our paper: Analyze the role of peer effects in juvenile crime using a

network perspective (Jackson, 2008) and analyze its policy implications

(Who is the Key Player)

Mechanisms

Theoretical model of individual behavior with social interactions

Identifying the Key Player



Main findings:

Peer Effects are Important in Criminal Activities.

A one standard deviation increase in the aggregate level of delinquent

activity of the peers translate into a roughly 11 percent increase of a

standard deviation in the individual level of activity.



Conterfactual Study to Determine the Key Player

Key players: more likely to be a male, have less educated parents, are

less attached to religion and feel socially more excluded.

Feel that adults care less about them, are less attached to their school

and have more troubles getting along with the teachers.

Even though some criminals are not very active in criminal activities,

they can be key players because they have a crucial position in the

network in terms of betweenness centrality



Theoretical model

The network N = {1, . . . , n} finite set of agents connected by a

graph/network g.

Two individuals i and j are directly connected (i.e. best friends) in g if

and only if gij = 1, and gij = 0, otherwise.

Friendship is a reciprocal relationship: gij = gji and gii = 0.



The n−square adjacency matrix G of a network g keeps track of the

direct connections in this network.

Example: 3 agents

� � �

2 1 3

Figure 1. Three agents on a line.

Adjacency matrix :

G =



0 1 1
1 0 0
1 0 0






Preferences yi: delinquency effort level of delinquent i,

y = (y1, ..., yn) population delinquency profile.

ui(y,g) = (ai + ηr + εi) yi︸ ︷︷ ︸
Proceeds

−
1

2
y2i
︸︷︷︸

moral cost of crime

− p f yi︸ ︷︷ ︸
cost of being caught

+ φ
n∑

j=1

gijyiyj

︸ ︷︷ ︸
positive peer effects

Utility function: standard costs/benefits structure (a la Becker) with an

added element: peer effects.



Individual outcomes results from both idiosyncratic characteristics and

peer effects

Payoffs are interdependent and agents choose their levels of activity

simultaneously.

Nash equilibrium.



Different centrality measures to capture the 
prominence of actors inside a network.  

 
 
 
Degree centrality: counts the number of 

connections an agent has.  
 
 
 
 
Bonacich centrality: gives to any individual a 

particular numerical value for each of his/her direct 
connection. Then, give a smaller value to any 
connection at distance two and an even smaller 
value to any connection at distance three; etc. When 
adding up all these values, we end up with a new 
numerical value that is now capturing both direct 
and indirect connections of any order.  

 
 
 
Betweenness centrality: calculates the relative 

number of indirect connections (or shortest paths) in 
which the actor into consideration is involved in 
with respect to the total number of paths in the 
network.   

 
 



 

 
 

 
Agent in the middle: 

highest betweenness
 
Bonacich centrality

discount factor.  
 
For small discount factors (i.e. 

less benefits), this
for high levels of discount (i.e. direct links are 
weighted less), this agent is the most central.
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Agent in the middle: Lowest degree centrality
highest betweenness centrality.  

centrality: Depends on the value
 

For small discount factors (i.e. indirect links give 
less benefits), this agent is the less central one while 
for high levels of discount (i.e. direct links are 
weighted less), this agent is the most central.

 

 

centrality, 

value of the 

t links give 
agent is the less central one while 

for high levels of discount (i.e. direct links are 
weighted less), this agent is the most central. 
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The Bonacich network centrality The kth power Gk = G(k times)... G

of the adjacency matrix G keeps track of indirect connections in g.

The coefficient g
[k]
ij in the (i, j) cell of Gk gives the number of paths of

length k in g between i and j.

Definition 0.1 Given a vector u ∈ Rn+, and φ ≥ 0 a small enough

scalar, we define the vector of Bonacich centralities of parameter φ in

the network g as:

bu (g, φ) = (I− φG)−1 u =
+∞∑

p=0

φpGpu.



Example

� � �

2 1 3

Figure 1

G =



0 1 1
1 0 0
1 0 0


 .

G2k =



2k 0 0

0 2k−1 2k−1

0 2k−1 2k−1


 , G2k+1 =




0 2k 2k

2k 0 0

2k 0 0


 , k ≥ 1.



Assume α = 1.

b1(g, φ) =
+∞∑

k=0

[
φ2k2k + φ2k+12k+1

]
=

1 + 2φ

1− 2φ2

b2(g, φ) = b3(g, φ) =
+∞∑

k=0

[
φ2k2k + φ2k+12k

]
=

1 + φ

1− 2φ2



Nash equilibrium

First-order conditions:

yi = φ
n∑

j=1

gijyj +
M∑

m=1

βmx
m
i − pf + ηk + εi

µ1(G): largest eigenvalue of G, αi = ai − pf + ηk + εi

Proposition 0.1 If φµ1(G) < 1, the peer effect game with payoffs given

above has a unique Nash equilibrium in pure strategies given by:

y∗ = bα (g, φ)



Best-reply functions

BRi(y−i) = φ
n∑

j=1

gijyj +
M∑

m=1

βmx
m
i − pf + ηk + εi

Alice︸ ︷︷ ︸
yA↑∆

→ Bob︸ ︷︷ ︸
yB↑φ∆

→ Charlie︸ ︷︷ ︸
yC↑φ

2∆

• Direct complementarities induce indirect complementarities of all

possible order.

• There is a discount of distance φdistance.

• This means that φ cannot be too large.



Finding the key player

Planner’s objective: find the key player is to generate the highest possi-

ble reduction in aggregate delinquency level by picking the appropriate

delinquent.

Planner’s problem:

max{y∗(g)− y∗(g−i) | i = 1, ..., n},

min{y∗(g−i) | i = 1, ..., n}



M(g, φ) = (I− φG)−1 a non-negative matrix.

Its coefficients mij(g, φ) =
∑+∞
k=0 φ

kg
[k]
ij count the number of walks in

g starting from i and ending at j, where walks of length k are weighted

by φk.

Bonacich centrality of node i: bαi(g, φ) =
∑n
j=1αjmij(g, φ): counts

the total number of paths in g starting from i weighted by the αj of

each linked node j

Definition 0.2 For all networks g and for all i, the intercentrality mea-

sure of delinquent i is:

di∗(g, φ) = bα(g, φ)− b
[−i]
α (g, φ) =

bαi(g, φ)
∑j=n
j=1 mji(g, φ)

mii(g, φ)



Proposition 0.2 A player i∗ is the key player that solves min{y∗(g−i) |

i = 1, ..., n} if and only if i∗ is a delinquent with the highest inter-

centrality in g, that is, di∗(g, φ) ≥ di(g, φ), for all i = 1, ..., n.

Intercentrality captures, in an meaningful way, the two dimensions of the

removal of a delinquent from a network: the direct effect on delinquency

and the indirect effect on others’ delinquency involvement.



Example

Network of four delinquents (i.e. n = 4) with

(α1, α2, α3, α4) = (0.1, 0.2, 0.3, 0.4)

and

4 21

3



G =




0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0






Decay factor φ = 0.3.

Nash equilibrium:



y∗1
y∗2
y∗3
y∗4


 =




bα,1(g, φ)
bα,2(g, φ)
bα,3(g, φ)
bα,4(g, φ)


 =




0.66521
0.60377
0.68068
0.59958




Total crime effort:

y∗ = y∗1 + y∗2 + y∗3 = bα(g, φ) = 2.549

Delinquent 3 has the highest weighted Bonacich and thus provides the

highest crime effort.



Intercentrality: di∗(g, φ) = bα(g, φ)− b
[−i]
α (g, φ)

Remove delinquent 1.

4 2

3



We have now a network with three delinquents, with (α2, α3, α4) =

(0.2, 0.3, 0.4) and where

G =




0 1 0
1 0 0
0 0 0




Using the same decay factor, φ = 0.3, we obtain:



y∗2
y∗3
y∗4


 =



bα,2(g

[−1], φ)

bα,3(g
[−1], φ)

bα,4(g
[−1], φ)


 =




0.31868
0.3956
0.4




so that the total effort is now given by:

y∗[−1] = y∗2 + y∗3 + y∗4 = b
[−1]
α (g, φ) = 1.114



Thus, player 1’s contribution is

bα(g, φ)− b
[−1]
α (g, φ) = 2.549− 1.114 = 1.435

Doing the similar exercise for individuals 2, 3, 4, we obtain:

bα(g, φ)− b
[−2]
α (g, φ) = 1.244

bα(g, φ)− b
[−3]
α (g, φ) = 1.146

bα(g, φ)− b
[−4]
α (g, φ) = 0.988



Check that the key player is delinquent 1. Formula:

d1∗(g, φ) =
bα,1(g, φ)

∑j=4
j=1mj1(g, φ)

m11(g, φ)

M = (I− φG)−1 =




1.5317 0.65646 0.65646 0.45952
0.65646 1.3802 0.61101 0.19694
0.65646 0.61101 1.3802 0.19694
0.45952 0.19694 0.19694 1.1379




m11(g, φ) = 1.5317



and

j=4∑

j=1

mj1(g, φ) = m11(g, φ) +m21(g, φ) +m31(g, φ) +m41(g, φ)

= 1.5317 + 0.65646 + 0.65646 + 0.45952

= 3.3041

Therefore,

d1∗(g, φ) =
bα,1

∑j=3
j=1mj1(g, φ)

m11(g, φ)

=
0.66521× 3.3041

1.5317
= 1.435

d1∗(g, φ) = bα(g, φ)− b
[−1]
α (g, φ) = 1.435



Is the key player always the more active criminal?

Holding bi(g, φ) fixed, the intercentrality di(g, φ) of player i decreases

with the proportion mii(g, φ)/bi(g, φ) of i’s Bonacich centrality due to

self-loops, and increases with the fraction of i’s centrality amenable to

out-walks.

Not always true.



Consider this network g with eleven criminals.

Figure 1: A bridge network
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We distinguish three different types of equivalent actors in this network,
which are the following:

Type Criminals
1 1
2 2, 6, 7 and 11
3 3, 4, 5, 8, 9 and 10



Role of location in the network

Criminals are ex identical: α = 1

b1 (g, φ) = (I− φG)−1 1

y∗i = b1i (g, φ) and di∗(g, φ) = b1(g, φ)− b
[−i]
1 (g, φ).

Take φ = 0.2.

Table 1a: Key player versus Bonacich centrality in a bridge network

Player Type 1 2 3
yi = bi 8.33 9.17∗ 7.78
di 41.67∗ 40.33 32.67



Table 1b: Characteristics of criminals in a network

where the most active criminal is not the key player

Player type 1 2 3
Degree centrality 0.4 0.5 0.4
Closeness centrality 0.625 0.555 0.416
Betweenness centrality 0.555 0.2 0
Clustering coefficient 0.33 0.7 1



Table 1c: Characteristics of the network

in which the most active criminal is not the key player

Network Characteristics
Average Distance 2.11
Average Degree 4.36
Diameter 4
Density 0.211
Asymmetry 0.125
Clustering 0.805

Degree centrality 7.78× 10−3

Closeness centrality 0.323
Betweenness Centrality 0.47556

Assortativity −3.49× 10−16



Data

Dataset of friendship networks in the United States from the National

Longitudinal Survey of Adolescent Health (AddHealth)

Richness of the information provided by the AddHealth data

Pupils were asked to identify their best friends from a school roster

Friendship information is based upon actual friends nominations.

Pupils were asked to identify their best friends from a school roster (up

to five males and five females)



The limit in the number of nominations is not binding

Less than 1% of the students in our sample show a list of ten best

friends

A link exists between two friends if at least one of the two individuals

has identified the other as his/her best friend (undirected networks)

Information on the characteristics of nominated friends



Criminal activity

Addhealth contains an extensive set of questions on juvenile delinquency,

ranging from light offenses that only signal the propensity towards a

delinquent behavior to serious property and violent crime

Delinquency index

15 delinquency items:

1) paint graffiti or signs on someone else’s property or in a public place

2) deliberately damage property that didn’t belong to you

3)lie to your parents or guardians about where you had been or whom you were with

4)take something from a store without paying for it



5)get into a serious physical fight

6)hurt someone badly enough to need bandages or care from a doctor or nurse

7) run away from home

8) drive a car without its owner’s permission

9) steal something worth more than $50

10) go into a house or building to steal something;

11) use or threaten to use a weapon to get something from someone

12) sell marijuana or other drugs

13) steal something worth less than $50

14) take part in a fight where a group of your friends was against another group

15) act loud, rowdy, or unruly in a public place.



Each response is coded using an ordinal scale ranging from 0 (i.e. never

participate) to 1 (i.e. participate 1 or 2 times), 2 (participate 3 or 4

times) up to 3 (i.e. participate 5 or more times)

The delinquency index is a composite score: It ranges between 0.09 and

9.63.



Because of the theoretical model, we focus only on networks of delin-

quents

thus excluding the individuals who report never participating in any

delinquent activity (roughly 40% of the total).

Final sample: 1,297 criminals distributed over 150 networks.

Minimum number of individuals in a delinquent network: 4, maximum:

77.

Mean and the standard deviation of network size: roughly 9 and 12

pupils.

On average, delinquents declare having 2.26 friends with a standard

deviation of 1.52.



Table 1: List of controls



Female

Black or African American

Other races

Age

Religion practice

Health status

School attendance

Student grade

Organized social participation

Motivation in education

Relationship with teachers

Social exclusion

School attachment

Parental care

Household size

Two married parent family

Single parent family

Public assistance

Mother working



Parental education

Parent age

Parent occupation manager

Parent occupation professional or technical

Parent occupation office or sales worker

Parent occupation manual

Parent occupation military or security

Parent occupation farm or fishery

Parent occupation retired

Parent occupation other



Neighborhood quality

Residential building quality

Neighborhood safety

Residential area suburban

Residential area urban - residential only

Residential area commercial properties - retail

Residential area commercial properties - industrial

Residential area type other

Friend attachment

Friend involvement

Friend contacts

Physical development

Self esteem



Empirical model

First-order conditions:

yi = φ
n∑

j=1

gijyj +
M∑

m=1

βmx
m
i +

1

gi

M∑

m=1

n∑

j=1

γmgij x
m
j − pf + ηk + εi



Econometric equivalent:

yi,r = φ
nr∑
j=1

gij,ryj,r + x
′
i,rβ +

1

gi,r

nr∑
j=1

gij,rx
′
j,rγ + η∗r + ǫi,r,

r̄ : total number of networks in the sample (150 in our dataset),

nr: number of individuals in the rth network

n =
∑r̄
r=1 nr total number of sample observations.

xi,r = (x1i,r, · · · , x
m
i,r)

′, η∗r = ηr − pf , and ǫi,r’s are i.i.d. innovations

with zero mean and variance σ2 for all i and r.



Matrix form:

Yr = φGrYr +Xrδ1 +G
∗
rXrδ + η

∗
rlnr + ǫr,

G∗r row-normalized of Gr



Estimation issues

Are we really capturing peer effects?

or

Are we only capturing the effects of

• exogenous peer characteristics

• correlation in tastes of people that sort in the same group



Situations: individuals in the same group tend to behave similarly.

Example: Effects of neighborhood average crime rate on criminal activ-
ities of an individual.

Three consistent explanations

Endogenous Effects Neighbors’ decisions directly affects her own deci-
sion.

Contextual Effects Distribution of background characteristics lead sim-
ilar behavior.

Correlated Effects Similar environment/characteristics (neighborhood
quality) lead similar behavior.

Desirable policy may be totally different, depending on the source of
seemingly related behavior.



Policy implications. Identifying peer effects: Why is it important?

Manski (1993, 2000) and Moffitt (2001): it is important to separately

identify peer or endogenous effects from contextual or exogenous ef-

fects.

Because endogenous effects generate a social multiplier while contextual

effect don’t.

Example of crime: A special program targeting some individuals will

have multiplier effects: the individual affected by the program will reduce

its criminal activities and will influence the criminal activities of his/her

peers, which, in turn, will affect the criminal activities of his/her peers,

and so on.

If only contextual effects are present, then there will be no social multi-

plier effects from any policy affecting only the “context” (for example,

improving the quality of the teachers at school).



It is important to separately identify peer or endogenous effects from

confounding or correlated effects.

The formation of peer group is not random and individuals do select

into groups of friends.

The same criminal activities may be due to common unobservable vari-

ables (such as, for example, the fact that individuals from the same

network like bowling together) faced by individuals belonging to the

same network rather than peer effects.

If the high-crime rates are due to the fact that teenagers like to bowling

together, then obviously the implications are very different than if it is

due to peer effects.



1) The reflection problem (Manski, 1993)

Is it possible to disentangle the endogenous effects, i.e. the influence

of peer outcomes, from the (contextual) exogenous effects, i.e. the

influence of exogenous peer characteristics?

It arises because in the standard approach individuals interact in groups,

that is individuals are affected by all others in their group and by none

outside the group

In social networks groups overlaps



Consider our model without network fixed effects:

Yr = φGrYr +Xrδ1 +G
∗
rXrδ + ǫr,

This model is identified if and only if E (GrYr | Xr) is not perfectly

collinear with the regressors (Xr, G∗rXr) so that instruments can be

found for the endogenous vector GrYr.

Bramoulle et al (2009): This condition is equivalent to Ir, Gr and G2
r

are linearly independent.

This is true as long as the networks are partially overlapping: some

individuals may not be friends with his/her friends’ friends (i is friend

to j and j is friend to k but k is not friend with i).



For individual i, the characteristics of peers of peers G2
rXr (i.e. xk,r) is

a valid instrument for peers’ behavior G2
rYr (i.e. yj,r) since xk,r affects

yi,r only indirectly through its effect on yj,r (distance 2)

i kj

YjYi Xk

The natural exclusion restrictions induced by the network structure (ex-

istence of an intransitive triad) guarantee identification of the model.



2) Correlated effects/selection

Is it possible to disentangle “endogenous effects” from “correlated ef-

fects”, i.e. those due to the fact that individuals in the same group tend

to behave similarly because they face a common environment?

Correlated effects might originate from the possible sorting of agents

into “groups”

If the variables that drive this process of selection are not fully observ-

able, potential correlations between (unobserved) group-specific factors

and the target regressors are major sources of bias.



Selection on observables

Our particularly large information on individual, parental, school, neigh-

borhood variables should reasonably explain the process of selection into

groups



Selection on unobservables

Assume agents self-select into different networks in a first step, and that

link formation takes place within groups in a second step.

Bramoullé et al. (2009): if link formation is uncorrelated with the

observable variables, this two-step model of link formation generates

network fixed effects.

Assuming additively separable network heterogeneity, a within group

specification is able to control for selection issues

Bramoullé et al. (2009): by subtracting from the individual-level vari-

ables the network average, social effects are again identified and one

can disentangle endogenous effects from correlated effects



Consider our model with network fixed effects:

Yr = φGrYr +Xrδ1 +G
∗
rXrδ + η

∗
rlnr + ǫr,

We can eliminate the network fixed effect by the network-mean trans-

formation, that is by multiplying this equation by the matrix: Jr =

Imr −
1
mr
lrl′r (Imr identity matrix, lr vector of 1).

Model becomes:

JrYr = φJrGrYr + JrXrδ1 + JrG
∗
rXrδ + Jrǫr



Model can be written as:

Ŷr = φGrŶr + X̂rδ1 +G
∗
rX̂rδ + ǫ̂r

where Ŷr = JrYr, X̂r = JrXr, ǫ̂r = Jrǫr.

The model can be identified if and only if E
(
GrŶr | X̂r

)
is not perfectly

collinear with the regressors
(
X̂r, G∗rX̂r

)
.

This condition is equivalent to Ir, Gr, G2
r and G3

r are linearly indepen-

dent.

The condition is more demanding because some information has been

used to deal with the fixed effects.



Bramoulle et al (2009) show that if two agents i and j in a network are

separated by a link of distance 3, then Ir, Gr, G2
r and G3

r are linearly

independent. Model is identified.

Consider four individuals: ij, jk, kl, but l is not friend with i.

xl,r can serve as an instrument for yj,r in individual i’s equation since

xl,r affects yi,r but only indirectly through its effect on yk,r.

lkji

XlYkYjYi



To sum-up:

We estimate:

yi,r = φ
nr∑
j=1

gij,ryj,r + x
′
i,rβ +

1

gi,r

nr∑
j=1

gij,rx
′
j,rγ + η∗r + ǫi,r,

with 6 different methods (best one: bias-corrected many-IV GMM esti-

mator).



Results

The estimated effect of φ,which measures the intensity of peer effects

is positive and highly statistically significant

The impact is not negligible in magnitude

A one-standard deviation increase in the aggregate level of delinquent

activity of the peers translate into a roughly 11 percent increase of a

standard deviation in the individual level of activity.

Stronger peer effects for directed networks.



Different types of crime

The literature on local interactions has uncovered some interesting dif-

ferences between different types of crime

For instance, Ludwig et al. (2000) find that neighborhood effects are

large and negative for violent crime but have a mild positive effect on

property crime

In contrast, Glaeser et al. (1996) find instead that social interactions

seem to have a large effect on petty crime, a moderate effect on more

serious crime and a negligible effect on very violent crime



Split the reported offences between petty crimes andmore serious crimes.

The first group (type-1 crimes or petty crimes) encompasses the follow-

ing offences: (i) paint graffiti or sign on someone else’s property or in

a public place; (ii) lie to the parents or guardians about where or with

whom having been; (iii) run away from home; (iv) act loud, rowdy, or

unruly in a public place; (v) take part in a group fight; (vi) damage

properties that do not belong to you; (vii) steal something worth more

than $50.

The second group (type-2 crimes or more serious crimes) consists of

(i): taking something from a store without paying for it; (ii) hurting

someone badly enough to need bandages or care from a doctor or nurse;

(iii) driving a car without its owner’s permission; (iv) stealing some-

thing worth more than $50; (v) going into a house or building to steal

something; (iv) using or threatening to use a weapon to get something

from someone; (vii) selling marijuana or other drugs; (viii) getting into

a serious physical fight.



We obtain a sample of 1099 petty criminal distributed over 132 networks

and a sample of 545 more serious criminals distributed over 75 networks.

Petty crime networks have a minimum of 4 individuals and a maximum

of 73 (with mean equals to 8.33 and standard deviation equals to 10.74),

whereas the range for more serious crime networks is between 4 and 38

(with mean equals to 7.27 and standard deviation equals to 6.64).



We estimate the following modified version of our empirical model

yi,r,l = φl
nr∑
j=1

gij,ryj,r,l + x
′
i,r,lβl +

1

gi,r,l

nr∑
j=1

gij,r,lx
′
j,r,lγl + η

∗
r + ǫi,r,l

where l denotes the type of crime committed by individual i in network

r (l = 1, 2)



Estimation of φ

The impact of peer effects on crime are much higher for more serious

crimes than for petty crimes.

A standard deviation increase in the aggregate level of delinquent activ-

ity of the peers translate into a roughly 8 percent and 14.5 increase of

a standard deviation in the individual level of activity for petty crimes

and more serious crimes.



Dynamic network formation models

The model

So far: network fixed.

When the key player was removed, no new links were formed.

Invariant assumption on the reduced network g[−i], i.e. we assume that,

when the key player is removed, the other criminals in the network do

not form new links.



Now: dynamic model where both network formation and effort decisions

take place.

Crime decision (participation) is taken by each individual before t = 0

and that this decision will not change afterwards.

At each period of time t, a person is chosen at random among the n

criminal in the network gt, and has to decide whether or not to create a

link and, in case of link formation, with whom she wants to create this

link.



Morning-afternoon game:

At each period of time t, the timing of the game is as follows.

In the morning of day t, an agent (say, agent i) is chosen with equal

probability and makes a link-formation decision under uncertainty as

she does not know the realization of a random shock ǫi.

The shock is individual specific such that E[ǫi] = 0 for all i, Var[ǫi] =

σ2ǫ > 0, and all shocks are i.i.d across individuals.

We assume that the agent i who initiates a link formation with agent j

pays the cost ci of the link ij and that she is myopic, i.e. agent i only

takes into account the current benefit in terms of utility.



Directed networks so that, in terms of the adjacency matrix G = [gij],

agent i is only allowed to change a non-diagonal element of the ith row

of G to one if that element was zero at the beginning of day t.

At noon of day t, a new network is formed, which is denoted by Gt =

Gt(i, j) (each cell being gij,t(i, j)) where a new link pointing from j to

i is created. If i = j, then Gt is the same as Gt−1.

In the afternoon of day t, the random shock ǫi is realized and its value

becomes complete information for all agents.



All agents in the (new) network simultaneously choose their effort level

y to maximize their utility at time t after the link ij has been added or

not.

This utility is given by

ui,t(i, j) = [ai + η + ǫi] yi,t(i, j)−
1

2

[
yi,t(i, j)

]2

+φ
n∑

k=1

gik,t(i, j)yi,t(i, j)yk,t(i, j)− cigi,t(i, j)



Unique Nash equilibrium of the “afternoon game”

(assuming that φµ1(Gt(i, j)) < 1)

is such that

y∗i,t(i, j) = φ
n∑

k=1

gik,t(i, j)y
∗
j,t(i, j) + ai + η + ǫi

or in vector form

y∗t (i, j) = [I− φGt(i, j)]
−1 (a+ η.ln + ǫ)



The expected utility model

Consider again the “morning game”: the chosen agent i makes her link

formation decision by maximizing her expected utility maxj E
[
u∗i (i, j)

]

where

E
[
u∗i,t(i, j)

]
= (ai + η) E

[
y∗i,t(i, j)

]
+ E

[
ǫi y

∗
i,t(i, j)

]

−
1

2
E
{[
y∗i,t(i, j)

]2}

+φ
n∑

k=1

gik,t(i, j)E
[
y∗i,t(i, j)y

∗
k,,t(i, j)

]
− cigi,t(i, j)



Denote: St(i, j) = [I− φGt(i, j)]
−1 and Si,t(i, j) be the ith row of the

matrix St(i, j) and Sii,t(i, j) be the ith element of the vector Si,t(i, j).

y∗i,t(i, j) = Si,t(i, j) (a+ η.ln + ǫ)

E
[
ǫi y

∗
i,t(i, j)

]
= σ2ǫSii,t(i, j)

E
{[
y∗i,t(i, j)

]2}
=
{
E
[
y∗i,t(i, j)

]}2
+ σ2ǫSi,t(i, j)S

′
i,t(i, j)

and

E
[
y∗i,t(i, j)y

∗
k,,t(i, j)

]
= E

[
y∗i,t(i, j)

]
E
[
y∗k,,t(i, j)

]
+σ2ǫSk,t(i, j)S

′
i,t(i, j)



Determine a lower bound of ci:

cEOi,t = max
j

1

2

{
E
[
y∗i,t(i, j)

]}2
−

1

2
max
j

{
E
[
y∗i,t(i, i)

]}2

If ci ≥ c
EO
i,t for all i, then no link will be ever created at period t.



Convergence and equilibrium

Let time be measured at countable dates t = 0, 1, 2, ... and consider a

discrete time Markov chain for the network formation process (Gt)
∞
t=0

with Gt = (N,Lt) comprising the set of delinquents N = {1, ..., n}

together with a set of links Lt at time t between them.



Definition 0.5 Consider a discrete time Markov chain (Gt)
∞
t=0 on the

probability space (Ω,F ,P). Consider a network Gt = (N,Lt) at time t

with delinquents N = {1, ..., n} and links Lt. Let Gt(i, j) be the graph

obtained from Gt by the addition of the edge ij �∈ Lt between agents

i, j ∈ N . Let u∗t (i, j) =
(
u∗1,t(i, j), ..., u

∗
n,t(i, j)

)
denote the profile of

Nash equilibrium payoffs of the delinquents inGt(i, j) following from the

above payoff function with parameter φ < 1/µ1(Gt). Then delinquent

j is a best response of delinquent i if u∗i,t(i, j) ≥ u
∗
i,t(i, k) for all j, k ∈

N\Ni,t ∪ {i}, where Ni,t = {j ∈ N : ij ∈ Lt} is the neighborhood of

individual i ∈ N . The set of delinquent i’s best responses is denoted by

BRi,t.



Definition 0.6 We define the network formation process (Gt)
∞
t=0 with

Gt = (N,Lt), as a sequence of networks G0,G1, ... in which, at every

time t = 0, 1, 2, ..., a delinquent i ∈ N is uniformly selected at random.

This delinquent i initiates a link to a best response delinquent j ∈ BRi,t.

The link is created if BRi,t �= ∅ and u∗i,t(i, j) ≥ u
∗
i,t(i, i). No link will

be created otherwise. If BRi,t is not unique, then i randomly selects

one delinquent in BRi,t.



(Gt)
∞
t=0 is a finite state, discrete time, homogeneous Markov chain.

Moreover, the transition matrix P is defined by

(P)ij = P
(
Gt+1 = Gj | Gt = Gi

)
for any Gi,Gj ∈ Ω



Definition 0.7 Consider the network formation process (Gt)
∞
t=0 with

Gt = (N,Lt) described above, where, at each period of time t, the

morning-afternoon game is played. We say that the network G0 at

time t = 0 converges to an equilibrium network GT at time t = T

when each of the n delinquents in the network GT has no incentive to

create a new link. That is, for all i = 1, ..., n, when E
[
u∗i,T (i, i)

]
>

maxk E
[
u∗i,T (i, k)

]
.

In terms of Markov chain, this means that the equilibrium network GT
is an absorbing state.



Finding the key player

Key-player policy in the dynamic-network formation model.

At t = 0, before the dynamic-network formation game described above

starts, the planner will choose the key player i∗ in the following way.

The planner will compare the (expected) total crime that will emerge in

equilibrium when she does not remove a delinquent and when she does.

The key player i∗ will be the delinquent who reduces the most the total

(expected) crime.

The expected equilibrium effort outcome is equal to:

E (y∗T ) = [I− φGT ]
−1 (a+ η.ln)



After removing a delinquent at t = 0, the expected equilibrium effort

outcome is equal to:

E
(
y
[−i]∗
T

)
=
[
I− φG

[−i]
T

]−1
(a+ η.ln)



Planner’s objective:

max
i




n∑

j=1

E
(
y∗j,T

)
−

n∑

j=1,j �=i

E
(
y
[−i]∗
j,T

)
| i = 1, ..., n





This is equivalent to:

min
i





n∑

j=1,j �=i

E
(
y
[−i]∗
j,T

)
| i = 1, ..., n







Who is the key player? Econometric issues

Determining the key player without endogenous participation

We need first to estimate the total expected crime in equilibrium when

a delinquent is removed, i.e.
n∑

j=1,j �=i

E
(
y
[−i]∗
j,T

)
.

Expected equilibrium crime effort to be determined:

̂
E
(
y
[−i]∗
T

)
=
[
I− φ̂G

[−i]
T

]−1
(â+ η̂.ln)

Bias-corrected many-IV GMM estimation procedure: φ and ai can be

estimated by φ̂ and âi while η can be estimated by the average of the

estimation residuals.



The only parameter undetermined from the bias-corrected many-IV GMM

estimation is ci.

Assume that the network observed in the AddHealth data is stable, that

is, no one has an incentive to create a new link.

Let the observed network in the AddHealth data be denoted by G0. We

estimate ci by c
EU
i,0 (lower bound that guarantees G0.



We will thus estimate ci by

ĉEUi,t = max
j

1

2

{
̂

E
[
y∗i,t(i, j)

]}2

−
1

2
max
j

{
̂

E
[
y∗i,t(i, i)

]}2

+
σ̂2ǫ
2

[
Ŝi,t(i, i)Ŝ

′
i,t(i, i)− Ŝi,t(i, j)Ŝ

′
i,t(i, j)

]

+σ̂2ǫ
[
Ŝii,t(i, j)− Ŝii,t(i, i)

]

+σ̂2ǫ
[
φ̂ Ĝi,tŜk,t(i, j)Ŝ

′
i,t(i, j)− φ̂ Ĝi,t(i, i)Ŝk,t(i, i)Ŝ

′
i,t(i, i)

]

at each period of time t.



Simulation results

Only 5 networks do not satisfy this condition and thus we end up with

1,038 criminals distributed over 145 networks.

The average network is size 7 with a minimum of 4 and a maximum of

64 delinquents.

Figure 1 displayed the distribution of these 145 networks by their size.
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Figure 1: Distribution of networks by size for all crimes



Figure 1: Distribution of networks by size for all crimes



Table 4a: Dynamic network formation and key players for all crimes when ci = ci 
Network 
(# nodes) 

Highest 
Between 

Highest 
Bonacich 

KP 
Invariant 

KP 
Dynamics 

T crime 
Initial 

ET crime 
Dynamics 

ET crime 
Invariant 

KP 

ET crime 
Dynamics 

KP 

Density 
Initial 

(Diameter) 

Density 
Dynamics 
(Diameter) 

Density 
Invariant KP 
(Diameter) 

Density 
Dynamics KP 

(Diameter) 

# days 
Before 

(after KP) 
1  

(6) 
3 1 3 3 11.235 11.216 8.718 8.783 0.167 

(1)
0.167 

(1)
0.200 

(1)
0.250 

(1)
0 

(1)
2 

(4) 
2 4 3 3 7.732 7.762 5.489 5.489 0.333 

(3) 
0.333 

(3) 
0.500 

(2) 
0.500 

(2) 
0 

(0) 
3 

(5) 
2 2 2 2 12.631 12.616 9.222 9.222 0.300 

(3) 
0.300 

(3) 
0.333 

(1) 
0.333 

(1) 
0 

(0) 
4 

(4) 
1 1 1 1 8.117 8.138 5.532 5.663 0.250 

(2) 
0.250 

(2) 
0.167 

(1) 
0.500 

(1) 
0 

(2) 
5 

(64) 
28 57 35 62 148.653 148.204 144.184 144.858 0.0303 

(10) 
0.0306 

(10) 
0.0294 

(8) 
0.030 
(10) 

0 
(0) 

6 
(6) 

6 5 6 6 13.137 13.077 10.379 10.379 0.167 
(1) 

0.167 
(1) 

0.200 
(1) 

0.200 
(1) 

0 
(0) 

7 
(7) 

1 3 5 5 15.191 15.223 12.468 12.756 0.143 
(2) 

0.143 
(2) 

0.167 
(1) 

0.333 
(2) 

0 
(5) 

8 
(6) 

6 4 5 5 11.378 11.297 8.797 8.797 0.400 
(4) 

0.400 
(4) 

0.400 
(3) 

0.400 
(3) 

0 
(0) 

9 
(34) 

8 30 24 30 74.768 75.0138 69.923 72.055 0.0615 
(7) 

0.0615 
(7) 

0.057 
(7) 

0.063 
(7) 

0 
(0) 

10 
(30) 

30 13 26 26 79.651 79.665 75.546 75.546 0.0402 
(3) 

0.0402 
(3) 

0.037 
(3) 

0.037 
(3) 

0 
(0) 

11 
(9) 

4 5 4 3 38.188 37.939 32.819 33.208 0.125 
(2)

0.125 
(2)

0.054 
(1)

0.125 
(2)

0 
(0)

12 
(6) 

5 5 5 5 12.962 13.023 10.156 10.156 0.167 
(3) 

0.167 
(3) 

0.150 
(1) 

0.150 
(1) 

0 
(0) 

13 
(5) 

2 1 1 1 11.657 11.593 8.524 8.524 0.250 
(4) 

0.250 
(4) 

0.333 
(3) 

0.333 
(3) 

0 
(0) 

14 
(51) 

6 4 39 13 142.113 141.823 137.131 137.523 0.039 
(10) 

0.039 
(10) 

0.038 
(10) 

0.040 
(10) 

0 
(0) 

15 
(4) 

1 1 1 1 14.524 14.467 10.493 10.493 0.250 
(1) 

0.250 
(1) 

0.167 
(1) 

0.167 
(1) 

0 
(0) 

16 
(5) 

3 4 5 5 9.556 9.5605 7.233 7.547 0.300 
(3) 

0.300 
(3) 

0.333 
(2) 

0.417  
(2) 

0 
(1) 

17 
(4) 

2 3 4 4 7.366 7.367 5.119 5.217 0.417 
(3) 

0.417 
(3) 

0.50 
(2) 

0.667 
(2) 

0 
(1) 

18 
(4) 

3 1 3 3 10.884 10.847 7.226 8.106 0.333 
(2) 

0.333 
(2) 

0.167 
(1) 

0.667 
(2) 

0 
(3) 

19 
(9) 

9 6 6 1 23.911 23.736 20.528 20.945 0.139 
(5) 

0.139 
(5) 

0.107 
(5) 

0.161 
(4) 

0 
(1) 

20 
(5) 

3 1 2 5 14.123 14.109 10.787 10.868 0.350 
(3) 

0.350 
(3) 

0.417 
(3) 

0.333 
(1) 

0 
(0) 



In Figure 3, we investigate the three following questions:

Is the KP the most active delinquent in the network (left panel)?

Does the KP has the highest betweenness centrality (middle panel)?

Is the KP in the DM also the key player in the static network model?



 

Figure 3: Who is the key player? 
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Individual characteristics of key players



 Table 5: Who is the Key Player?  
-Significant Differences- 

All crimes 
 

 All Criminals Key Player Criminals  
 Mean St. dev Mean St. dev t-test 

      
Individual characteristics      
Female 0.53 0.50 0.23 0.42 0.0000 
Religion practice 3.65 1.41 3.28 1.57 0.0078 
Parent education 3.23 1.06 3.01 1.14 0.0279 
Mathematics score 2.18 1.00 2.53 1.05 0.0003 
Parental care 0.93 0.26 0.80 0.40 0.0002 
School attachment 4.12 0.87 3.71 1.07 0.0000 
Relationship with teachers 0.99 0.92 1.79 1.22 0.0000 
Social inclusion 4.47 0.74 4.23 0.86 0.0018 
Residential building quality 1.51 0.79 1.70 0.96 0.0226 
Two married parent families 0.74 0.44 0.61 0.49 0.0020 
Single parent family 0.22 0.42 0.30 0.46 0.0706 
Parent occupation manager  0.11 0.31 0.17 0.38 0.0704
Parent occupation military or security 0.02 0.14 0.00 0.00 0.0000 
Parent occupation other 0.16 0.37 0.11 0.31 0.0673 
      
Friends’ characteristics      
Religious practice 2.52 1.98 3.02 1.80 0.0025 
Student grade 6.42 4.33 7.64 3.85 0.0006 
Parental education 2.30 1.66 2.61 1.54 0.0279 
Mathematics score 1.54 1.24 1.87 1.24 0.0033
Self esteem 2.84 1.99 3.28 1.76 0.0066 
Physical development 2.44 1.76 2.69 1.52 0.0810 
Parental care 0.65 0.46 0.75 0.42 0.0152 
School attachment 2.90 1.99 3.35 1.74 0.0055 
Social inclusion 3.12 2.09 3.65 1.83 0.0019 
Residential building quality 1.05 0.89 1.19 0.83 0.0621 
Residential area urban 0.43 0.48 0.55 0.48 0.0033 
Household size 3.13 2.22 3.48 1.97 0.0474 
Single parent families 0.14 0.31 0.23 0.39 0.0105 
      
      
N.obs. 893  145   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 6: Key Player versus Bonacich centrality  
-Significant Differences- 

All crimes 
 

 Key Player 
Most Active 

Criminal 

Key Player 
Not the Most Active 

Criminal 
 

 Mean St. dev Mean St. dev t-test 
      
Individual characteristics      
Female 0.12 0.33 0.30 0.46 0.0080 
Social inclusion 3.98 0.86 4.39 0.82 0.0053 
Residential building quality 1.91 1.03 1.57 0.89 0.0459 
      
Friends’ characteristics      
Residential area urban 0.67 0.46 0.48 0.48 0.0231 
      
N.obs. 56  89   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 7: Who is the Key Player?  
-Significant Differences- 

Petty crimes 
 All Criminals Key Player Criminals  
 Mean St. dev Mean St. dev t-test 

      
Individual characteristics      
Female 0.54 0.50 0.24 0.43 0.0000 
Mathematics score 2.17 1.00 2.44 1.01 0.0049 
Physical development 3.33 1.09 3.55 1.06 0.0325 
Parental care 0.93 0.25 0.74 0.44 0.0000 
School attachment 4.11 0.88 3.69 1.09 0.0001 
Relationship with teachers 0.99 0.94 1.62 1.16 0.0000 
Social inclusion 4.48 0.73 4.14 0.88 0.0001 
Residential area urban 0.56 0.50 0.65 0.48 0.0523 
Parent occupation manager 0.11 0.31 0.18 0.38 0.0463 
Parent occupation manual 0.33 0.47 0.22 0.41 0.0065 
      
Friends’ characteristics      
Student grade 6.53 4.39 7.66 3.95 0.0034 
Religion practice 2.29 1.65 2.69 1.57 0.0086 
Mathematics score 1.52 1.21 1.81 1.17 0.0108
Self esteem 2.85 2.00 3.24 1.76 0.0224 
Parental care 0.65 0.46 0.75 0.42 0.0170 
School attachment 2.90 1.99 3.29 1.76 0.0251 
Social inclusion 3.12 2.09 3.62 1.86 0.0063 
Residential area urban 0.41 0.47 0.54 0.47 0.0047 
Single parent family 0.15 0.31 0.23 0.38 0.0181
Parent occupation professional/technical 0.14 0.31 0.20 0.36 0.0646 
      
N.obs. 807  128   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 

 
Table 8: Who is the Key Player? 

-Significant Differences- 
More serious crimes 

 All Criminals Key Player Criminals  
 Mean St. dev Mean St. dev t-test 

      
Individual characteristics      
Female 0.44 0.50 0.23 0.42 0.0004 
Physical development 3.25 1.11 3.69 1.04 0.0023 
School attachment 3.98 0.95 3.68 1.05 0.0271 
Relationship with teachers 1.16 1.04 1.97 1.35 0.0000 
Parent occupation manager 0.11 0.31 0.03 0.17 0.0022 
Parent occupation military or security 0.01 0.09 0.00 0.00 0.0833 
      
Friends’ characteristics      
School attachment 2.74 1.95 3.17 1.78 0.0721 
Social inclusion 3.07 2.11 3.53 1.96 0.0828 
Parent occupation military or security 0.01 0.07 0.00 0.00 0.0718 
Parent occupation farm or fishery 0.02 0.13 0.00 0.00 0.0115 
      
N.obs. 334  70   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 

 



Table 9: Key Player for Petty and Serious Crimes 
-Significant Differences- 

 
 Key Player 

Petty Crime 
Key Player 

More Serious Crime  

 Mean St. dev Mean St. dev t-test 
      
Individual characteristics      
Black or African American 0.17 0.38 0.31 0.47 0.0308 
Self esteem 4.04 1.08 3.73 1.11 0.0542 
Parental care 0.74 0.44 0.90 0.30 0.0033 
Relationship with teachers 1.62 1.16 1.97 1.35 0.0723 
Social inclusion 4.14 0.88 4.47 0.70 0.0041 
Parent occupation manager 0.18 0.38 0.03 0.17 0.0002 
Parent occupation military or security 0.03 0.17 0.00 0.00 0.0451 
      
Friends’ characteristics      
Female 0.40 0.43 0.26 0.40 0.0315 
Black or African American 0.13 0.32 0.24 0.43 0.0539 
Relationship with teachers 0.70 0.71 1.05 1.03 0.0132 
Parent occupation manager 0.11 0.29 0.05 0.19 0.0825 
Parent occupation military or security 0.02 0.14 0.00 0.00 0.0575
Parental occupation farm or fishery 0.02 0.11 0.00 0.00 0.1027 
      
N.obs. 128  70   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 
 



 
Table 10: Key Player versus Bonacich centrality 

-Significant Differences- 
Petty crimes 

 
 

 Key Player 
Most Active 

Criminal 

Key Player 
Not the Most Active 

Criminal 
 

 Mean St. dev Mean St. dev t-test 
      
Individual characteristics      
Residential building quality 1.94 1.11 1.43 0.76 0.0073 
      
Friends’ characteristics      
Mathematics score 1.57 1.11 1.95 1.20 0.0690 
Relationship with teachers 0.57 0.58 0.78 0.76 0.0789 
      
N.obs. 47  81   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 
 
 
 

Table 11: Key Player versus Bonacich centrality  
-Significant Differences- 

More Serious crimes 
 

 
 Key Player 

Most Active 
Criminal 

Key Player 
Not the Most Active 

Criminal 
 

 Mean St. dev Mean St. dev t-test 
      
Individual characteristics      
Religion practice 3.96 1.26 3.40 1.41 0.0884 
Parental care 0.96 0.19 0.86 0.35 0.1056 
School attachment 3.92 1.01 3.52 0.99 0.1049 
Relationship with teachers 2.43 1.45 1.67 1.20 0.0256
Residential area urban 0.61 0.50 0.81 0.40 0.0775 
      
Friends’ characteristics      
Other races 0.00 0.00 0.05 0.18 0.1031 
Relationship with teachers 1.31 1.15 0.87 0.91 0.0951 
Parental occupation professional/technical 0.23 0.42 0.07 0.20 0.0610 
      
N.obs. 28  42   
Notes: T-test for differences in means with unequal variances had been performed. P-values are reported 
 



Key players and network topology



Table 12: Key Players and network topology 
Individual centrality measures 

 
 

 All crimes 
 Betweenness Clustering Closeness Bonacich 

percentiles     
p50 0 0 0.33 2.49
p75 0.02 0 0.50 3.51
p90 0.20 0.17 0.75 5.20
p95 0.33 0.50 0.83 5.83
p99 0.42 1 1 6.99

min 0 0 0 1.51
max 0.5 1 1 9.39
 Key Players Not the Most Active Criminals 
>p90 71% 58% 27% 21% 
 Petty crimes 
percentiles Betweenness Clustering Closeness Bonacich 

p50 0 0 0.33 2.78
p75 0.05 0 0.57 3.63
p90 0.33 0.17 0.75 5.51
p95 0.33 0.5 0.83 6.23
p99 0.5 1 1 7.31

min 0 0 0 1.61
max 0.5 1 1 7.60
 Key Players Not the Most Active Criminals 
>p90 40% 72% 54% 8% 
 More serious crimes 
percentiles Betweenness Clustering Closeness Bonacich 

p50 0 0 0.40 2.50
p75 0 0 0.67 4.21
p90 0.09 0.21 0.67 6.70
p95 0.17 1 0.75 7.62
p99 0.5 1 1 11.37

min 0 0 0 1.69
max 0.5 1 1 11.37
 Key Players Not the Most Active Criminals 
>p90 71% 71% 50% 14% 
  

 



Table 13: Key Players and network topology 
Network centrality measures 

 
 All crimes  
 Key Player 

Most Active Criminal 
Key Player 

Not the Most Active Criminal  

Network characteristics Mean St. dev Mean St. dev t-test 
      
Diameter 2.52 1.43 2.59 1.47 0.7534 
Average distance 1.43 0.44 1.44 0.41 0.8879 
Average degree 1.02 0.32 1.03 0.29 0.8402 
Density 0.23 0.10 0.24 0.10 0.6293 
Asymmetry 0.68 0.24 0.67 0.23 0.9666 
Network clustering 0.07 0.15 0.05 0.12 0.4527 
Network degree 0.12 0.12 0.13 0.12 0.7331
Network closeness 0.30 0.12 0.30 0.14 0.5119 
Assortativity 1.6010-17 1.8110-16 5.2710-18 1.0610-16 0.6892 
Network betweeness- 0.13 0.12 0.15 0.12 0.3584 
N.obs. 56  89   
      

 Petty crimes  
 Key Player 

Most Active Criminal 
Key Player 

Not the Most Active Criminal  

Network characteristics Mean St. dev Mean St. dev t-test
      
Diameter 2.53 1.40 2.62 1.53 0.7482 
Average distance 1.44 0.44 1.45 0.42 0.8793 
Average degree 1.04 0.33 1.03 0.29 0.8316 
Density 0.25 0.10 0.23 0.10 0.3710 
Asymmetry 0.68 0.22 0.66 0.22 0.6797 
Network clustering 0.05 0.14 0.06 0.12 0.7413
Network degree 0.13 0.12 0.12 0.10 0.4249 
Network closeness 0.31 0.13 0.29 0.13 0.3919 
Assortativity 2.9410-17 8.2710-17 7.0010-18 1.2610-16 0.2275 
Network betweeness 0.16 0.13 0.14 0.12 0.3715 
N.obs. 47  81   
      

 More serious crimes
 Key Player 

Most Active Criminal 
Key Player 

Not the Most Active Criminal  

Network characteristics Mean St. dev Mean St. dev t-test (p-
value) 

      
Diameter 2.36 1.03 2.21 1.16 0.5900 
Average distance 1.41 0.31 1.34 0.35 0.4370   
Average degree 1.04 0.33 0.98 0.23 0.4221 
Density 0.25 0.10 0.25 0.09 0.8746 
Asymmetry 0.73 0.20 0.76 0.20 0.1606 
Network clustering 0.06 0.14 0.05 0.11 0.7377 
Network degree 0.13 0.13 0.16 0.13 0.4338 
Network closeness 0.32 0.12 0.30 0.12 0.5638 
Assortativity 2.1510-17 9.0910-17 1.1710-17 8.3210-17 0.6481 
Network betweeness 0.18 0.15 0.13 0.13 0.1589 
N.obs. 28  42   
      



Policy implications

Punishment should not be random but targeted to individuals that gen-

erate the highest multiplier effects.

The way a key player is calculated is precisely using the multiplier effects

due to endogenous peer effects.

Key player removal policy: When a delinquent is removed from network

r, the intercentrality measures of all the delinquents that remain active

are reduced, which triggers a decrease in delinquency involvement for

all of them.



Policy implications

1) We develop further the qualitative approach (simulations) to evaluate

the benefits versus costs of a key-player policy.

2) Use our analysis of key-player policies to address general policies

against crime.

3) KP methodology can be used to address policies in other activities

and other networks such as financial networks, R&D networks, networks

in developing economies, etc.



For each of the 145 networks (all crimes), we have calculated the re-

duction in total crime, following the removal of the key player.

Figure 2 displays the results.
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Figure 2: Distribution of networks by reduction in crime after the

removal of the key player
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Figure 3: Crime reduction and network size



Crime reduction is much more important in small networks than in large

networks.

A way to capture the size effect is to fix an objective in terms of crime

reduction (say 10 percent) and analyze how many key players need to

be removed in order to reach this objective.

For the small networks (less than 10 delinquents), one key player is

often enough (see Figure 2) while for large networks (more than 40

delinquents), more than three key players can be necessary to reach the

objective of 10 percent reduction in crime.



Table 14: Crime reduction when different policies are implemented (for ci = ci) 
Network 
(# nodes) 

KP 
Dynamics 

T crime 
Initial 

ET crime 
Dynamics 

ET crime 
Dynamics 

KP 

Reduction 
Crime 

KP (%) 

Reduction 
Crime 

MIN (%) 

Reduction 
Crime 

AVERAGE (%) 

Reduction 
Crime 

RANDOM (%) 
1  

(6) 
3 11.235 11.236 8.783 21.80 10.78 16.71 10.78 

2 
(4) 

3 7.732 7.740 5.489 29.08 13.88 21.78 29.09 

3 
(5) 

2 12.631 12.621 9.222 26.93 13.06 17.612 15.02 

4 
(4) 

1 8.117 8.130 5.663 30.35 19.74 24.64 27.37 

5 
(64) 

62 148.653 148.204 144.858 2.26 -19.72 -3.27 -19.35 

6 
(6) 

6 13.137 13.069 10.379 20.58 9.86 14.46 9.86 

7 
(7) 

5 15.191 15.208 12.756 16.13 2.41 11.84 15.20 

8 
(6) 

5 11.378 11.337 8.797 22.40 5.88 13.98 14.52 

9 
(34) 

30 74.768 75.014 72.055 3.94 -26.35 -9.82 -26.35 

10 
(30) 

26 79.651 79.665 75.546 5.17 -10.10 1.53 -10.10 

11 
(9) 

3 38.188 37.831 33.208 12.22 -2.70 7.12 -2.70 

12 
(6) 

5 12.962 12.990 10.156 21.81 6.039 12.88 6.04 

13 
(5) 

1 11.657 11.612 8.524 26.59 10.30 17.76 13.16 

14 
(51) 

13 142.113 141.823 137.523 3.032 -22.73 -3.49 0.45 

15 
(4) 

1 14.524 14.420 10.493 27.23 24.64 25.55 24.64 

16 
(5) 

5 9.556 9.581 7.547 21.23 6.22 13.36 6.22 

17 
(4) 

4 7.366 7.3782 5.217 29.30 18.75 23.25 18.75 

18 
(4) 

3 10.884 10.850 8.106 25.29 14.80 22.319 24.52 

19 
(9) 

1 23.911 23.670 20.945 11.51 0.54 4.848 1.80 

20 
(5) 

5 14.123 14.138 10.868 23.13 15.69 18.92 16.59 
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Figure 4: Difference between a key-player and a random-target policy



Table 14b: Average crime reduction when different policies are implemented by network size (for ci = ci) 
 

Network 
size 

Average % crime reduction of a 
key play policy 

Average % crime reduction of a 
random target policy 

4 28,94 23,86 
5 23,67 18,29 
6 20,21 14,05 
7 17,08 11,07 
8 15,46 10,44 
9 13,56 7,00 
10 12,87 6,29 
11 10,68 3,99 
12 10,72 2,18 
13 10,51 5,02 
15 8,28 0,60 
16 9,04 1,79 
26 5,05 0,96 
30 5,17 1,53 
34 3,94 -9,82 
37 3,73 0,23 
51 3,03 -3,49 
64 2,26 -3,27 

 
 



Figure 5: Crime reduction and network size 
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How a key-player policy can be useful in fighting crime?

Data about criminal networks

() Juvenile deliquency in schools (survey data): There are data similar

to the AddHealth data for students in schools.

Weerman (2011) uses data from the Netherlands Institute for the Study

of Crime and Law Enforcement (NSCR) “School Study,” a study that

focused on social networks and the role of peers in delinquency with two

waves, conducted in the spring of 2002 and 2003.



() Adult crime (police data): the police has in fact quite a lot of

information on criminal networks.

Sarnecki (2001) was able to construct the network of all criminals in

Stockholm.

Each time two (or more) persons are suspected about a crime (co-

offenders), the police in Sweden registers this information.

A link in a network is then created between individuals  and , i.e.

 = 1, whenever individuals  and  are suspected of a crime together.



This type of information can be obtained from the police in many coun-

tries.

In the United States, there is also similar data.

For example, Coplink was one of the first large scale research projects in

crime data mining, and an excellent work in criminal network analysis.

Colink has information about the perpetrators’ habits and close asso-

ciations in crime to capture the connections between people, places,

events, and vehicles, based on past crimes.



() Gang networks

McGloin (2005) use data from the Newark portion of the North Jersey

Gang Task Force, a regional problem analysis project that sought to

define the local gang landscape in Northern New Jersey.



Another example of available gang network data: Mastrobuoni and Pat-

acchini (2012).

They use a data set provided by the Federal Bureau of Narcotics on

criminal profiles of 800 US Mafia members active in the 1950s and

1960s and on their connections within the Cosa Nostra network.



How to implement a key-player policy?

Once we have identified a key player in a network, one cannot put

him/her in prison if he/she hasn’t committed any crime.

However, different policies can be implemented to reduce crime using a

key-player approach.



Implementation of KP policy in crime

Criminal networks: Identify the KP and offer him/her incentives to leave

the gang or the criminal network.

Examples: Police can offer them a job or conditional transfers (by asking

them to move to another city) or monitor them more.

In Canada, some gang members of criminal networks were persuaded to

abandon gang life in return for needed employment training, educational

training, and skills training (Tremblay et al., 1996).



Implementation of KP policy in crime

Police can target key players in a meaningful way.

Recent innovation in policing: “pulling-levers policing” (Kennedy, 1998,

2008).

Policy called the “Ceasefire approach”: combines a strong law enforce-

ment response with a “pulling levers” deterrence effort aimed at chronic

gang offenders.



The key to the success is to use a “levers/lever pulling” approach, which

is a crime deterrence strategy that attempts to prevent violent behavior

by using a targeted individual or group’s vulnerability to law enforcement

as a means of gaining their compliance.

Locate gang members who had outstanding arrest warrants or had vio-

lated probation or parole regulations.

Also gang members who had violated public housing rules, failed to pay

child support, or were similarly vulnerable.

Operation Ceasefire. first launched in Boston and youth homicide fell

by two-thirds after the Ceasefire strategy was put in place in 1996.

It was then implemented in Los Angeles in 2000: Strong effects.



Implementation of KP policy in crime

A key-player policy can also help for related issues.

Composition of groups. how to allocate under-age kids who have com-

mitted an offence into juvenile facilities (detention centers).

Young criminals are sent to juvenile detention centers.

Learning is an important aspect in prison (Bayer et al., QJE 2009).

Rank these kids by key player centralities and avoid to put together high

KPC with low KPC criminals.



Using our methodology to find key players for other types of

networks and activities

Financial networks

Huge information available on financial networks where links are usual

bank loans.

Cohen-Cole, Patacchini and Zenou (2011) use transaction level data on

interbank lending from an electronic interbank market, the e-MID SPA

(or e-MID)

Boss et al. (2004) analyze the network of Austrian banks in the year

2008 where links in the network represent exposures between Austrian-

domiciled banks on a non-consolidated basis (i.e. no exposures to foreign

subsidiaries are included).



Key player policy: Which bank should we bail out in order to reduce

systemic risk or maximize total activity?

“Too big to fail” versus “too interconnected to fail”

Which bank to monitor



R&D networks

Lot of information on R&D networks.

Garćıa-Canal et al. (2008) use alliance data steming from the Thomson

SDC Platinum data base.

Our model is easily adapted to R&D networks where efforts correspond

to quantity produced and a link (i.e. an alliance) decreases the cost of

producing goods.

Key-player policy: Identifying the key firms that are the most critical

for industry productivity.

Which firm should we subsidy in order to generate maximum total ac-

tivity?



Networks in developing economies

Many network data for developing countries (mainly surveys)

Fafchamps and Lund (2003): conducted a survey in four villages in

the Cordillera mountains of northern Philippines between July 1994 and

March 1995

Krishnan and Sciubba (2009): used the second round of the Ethiopian

Rural Household Survey, conducted in 1994).



Banerjee et al. (2012): Survey on 75 rural villages in Karnataka, India.

Look at the diffusion of a microfinance program in these villages.

Show: if the bank in charge of this program, had targeted individuals

in the village with the highest eigenvector centrality, the diffusion of

the microfinance program (i.e. take-up rates) would have been much

higher.



Key player policy: Adoption of a new technology since there is strong

evidence of social learning (Conley and Udry, 2010) and take-up rates

in microfinance programs.



Political networks

Evidence on lobbying to persuade public opinion when members of the

public influence each other’s opinion.

When people are deciding how to vote or which product to buy, they

discuss their decision with people in their social environment.

Competitions to persuade public opinion are the essence of political

campaigns, but also occur in marketing between rival firms or in lobbying

with interests groups on opposite sides of a legislation.

Our key-player policy suggests that resources should be spent on key

voters who have an influential position in the social network.



Tax evasion

Strong evidence that there are strong social interaction effects in tax

evasion (Fortin et al., 2007).

Galbiati and Zanella (2012) estimate social externalities of tax evasion

in a model where congestion of the auditing resources of local tax au-

thorities generates a social multiplier.

Relevant question would be: Which person(s) should we target to reduce

total tax evasion in a country?
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