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GAMES ON NETWORKS

Take the network as given and study the impact of net-
work structure on outcomes.

GAMES WITH STRATEGIC COMPLEMENT

VS

GAMES WITH STRATEGIC SUBSTITUTES



Defining Strategic Complements and Substitutes Play-
ers in  have action spaces .

Let  = 1 × · · ·.

Player ’s payoff function is denoted  : ×()→ R.

Equilibrium: Pure strategy Nash equilibrium: a profile of
actions a ∈  = 1 × · · ·, such that

( a−g) ≥ (
0
 a−g)

for all 0 ∈ .



Take  (the action space) to be a complete lattice with
an associated partial order ≥, for each .

Then it is easy to see that  is also complete lattice,

if we define a ≥ a0 if and only if  ≥ 0 for every ,

and where for any  ⊂  we define inf() = (inf{ :
a ∈ }) and sup() = (sup{ : a ∈ }).



A game exhibits strategic complements if it exhibits in-
creasing differences; that is, for all ,  ≥ 0 and
− ≥− 0−:

( −g)−(0 − g) ≥ ( 
0
−g)−(0 0−g)

or in other words if the difference ( g)−(0 g)
is an increasing function.



A game exhibits strategic substitutes if it exhibits de-
creasing differences; that is, for all  , with  6= ,
 ≥ 

0
 and − ≥− 0−:

( −g)−(0 − g) ≤ ( 
0
−g)−(0 0−g)

or in other words if the difference ( g)−(0 g)
is an decreasing function.



These notions are said to apply strictly if the inequalities
above are strict whenever   

0
 and − ≥− 0−

with   
0
 for  ∈ (g).



Examples

A given player’s payoff depends on other players’ behav-
iors, but only on those to whom the player is (directly)
linked in the network.

For any , , and g:

( a−g) = ( a
0
−g)

whenever a = a0 for all  ∈ (g).



Example 1 The Majority Game (Game with strategic
complements)

Players’ action spaces are  = {0 1}.

A player can choose to either do something or not to,
for instance, buying a product, attending a party, and so
forth.



Payoff to a player from taking action 1 compared to action
0 depends on the number of neighbors who choose action
1, so that


³
(1 (g)

)− (0 (g)
)
´

= 

⎛⎜⎝ X
∈(g)

 −
X

∈(g)

(1− )

⎞⎟⎠ 

If more than one half of ’s neighbors choose action 1,
then it is best for player  to choose 1, and if fewer than
one half of ’s neighbors choose action 1 then it is best
for player  to choose action 0.



Multiple equilibria

For example, all players taking action 0 (or 1) is an equi-
librium.

Another equilibrium

Figure 1: An equilibrium in the majority game
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Example 2 “Best-Shot” Public Goods Games (Game with
strategic substitutes)

For instance, the action might be learning how to do
something, where that information is easily communi-
cated; or buying a book or other product that is easily
lent from one player to another.

Taking the action 1 is costly and a player would prefer
that a neighbor take the action than having to do it him-
self or herself; but, taking the action and paying the cost
is better than having nobody take the action.

(a g) =

⎧⎪⎨⎪⎩
1−  if  = 1
1 if  = 0  = 1 for some  ∈ (g)
0 if  = 0  = 0 for all  ∈ (g)

where 1    0.



There are many possible equilibria in the best-shot public
goods game

Figure 2: An equilibrium in the best-shot public good game
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Definitions

An independent set relative to a graph ( , g) is a subset
of nodes  ⊂  for which no two nodes are adjacent
(i.e., linked).

 is a maximal independent set if there does not exist
another independent, set 0 6= , such that  ⊂ 0 ⊂
 .

A dominating set relative a graph ( , g) is a subset of
nodes  ⊂  such that every node in  is connected to
every other node in  via a path that involves only nodes
in , and every node not in  is linked to at least one
member of .



For example, the central node in a star forms a domi-
nating set and also a maximal independent set, while
each peripheral node is an independent set and the set of
all peripheral nodes is a maximal independent set.

Any set including the central node and some periperhal
nodes is a dominating set, but not an independent set.



The equilibria in the “Best-Shot” Public Goods Game cor-
respond exactly to having the set of players who choose
action 1 form a maximal independent set of nodes in
the network (Bramoullé and Kranton (2007)) that is, a
maximal set of nodes that have no links to each other in
the network.

Nobody wants to deviate from their Nash equilibrium ac-
tions.

The central player who chooses action 1. His/her utility
is 1− . Since all his/her neighbors choose action 0, de-
viating by choosing action 0 would give him/her a utility
of 0  1− .

Similarly, for each player who chooses action 0, his/her
utility is 1 since at least one of his/her neighbors choose
action 1. Choosing action 1 would give him/her 1−  

1.



For smooth functions, supermodularity/increasing dif-
ferences admit a convenient test.

Lemma: If (  g) is twice continuously differentiable,
increasing differences is equivalent to

2( −g)
−

≥ 0

for all  and −.

Similar result for decreasing differences which is equiva-
lent to

2( −g)
−

≤ 0



Proof: Increasing differences mean ( = +; 0 = 
and 0− = − + −; 0− = −)

( +  − + −g)− ( − + −g)

≥ ( +  − g)− ( −g)

Divide the two sides of the inequality by the positive quan-
tity  and let  tends to 0, we obtain:

lim
→0

( +  − + −g)− ( − + −g)


≥ lim
→0

( +  −g)− ( − g)


⇔ ( − + −g)


≥ ( −g)


⇔ ( − + −g)


− ( −g)


≥ 0



Divide the two sides of the inequality by the positive quan-
tity − and let − tends to 0, we obtain:

lim
−→0

⎡⎢⎣(−+−g)

−
−

(−g)


−

⎤⎥⎦ ≥ 0

⇔ 2( − g)
−

≥ 0



Definitions

Let ≥ be a partial order on a (nonempty) set  (so ≥

is reflexive, transitive and antisymmetric).

(≥) is a lattice if any two elements  and 0 have
a least upper bound (supremum for , sup, such that
sup( 

0
) ≥  and sup( 

0
) ≥ 0),

and a greatest lower bound (infimum for , such that
inf( 

0
) ≤  and inf( 0) ≤ 0), in the set.

A lattice (≥) is complete if every nonempty subset
of  has a supremum and an infimum in .



Take  (the action space) to be a complete lattice with
an associated partial order ≥, for each .

Then it is easy to see that  is also complete lattice,

if we define a ≥ a0 if and only if  ≥ 0 for every ,

and where for any  ⊂  we define inf() = (inf{ :
a ∈ }) and sup() = (sup{ : a ∈ }).



A nonempty set of best responses (−) is a closed
sublattice of the complete lattice  if

sup

((−)) ∈ (−)

and

inf

((−)) ∈ (−))



Existence of Equilibrium: Games of Strategic Com-
plements Games of strategic complements are well-behaved:
Not only do equilibria generally exist, but they form a
lattice so that they are well-ordered and there are easy
algorithms for finding the maximal and minimal equilibria.

Theorem 1 Consider a game of strategic complements
such that:

• for every player , and specification of strategies of the
other players, − ∈ −, player  has a nonempty set
of best responses (−) that is a closed sublattice of
the complete lattice , and

• for every player , if 0− ≥ −, then sup (
0
−) ≥

sup (−) and inf (
0
−) ≥ inf (−).

An equilibrium exists and the set of equilibria form a (non-
empty) complete lattice.



In games of strategic complements such that the set of
actions is finite, or compact and payoffs are continuous,
the conditions of the theorem apply and there exists an
equilibrium.

Note that the equilibria exist in pure strategies, directly in
terms of the actions  without requiring any additional
randomizations.

The same is not true games of strategic substitutes.



Finding maximal and minimal equilibria in a game of
strategic complements is then quite easy.

Let us describe an algorithm for the case where is finite.

Begin with all players playing the maximal action 0 = .
Let 1 = sup((

0
−)) for each  and, iteratively, let

 = sup((
−1
− )).

It follows that a point such that  = −1 is the maxi-
mal equilibrium point, and given the finite set of strate-
gies this must occur in a finite number of iterations.

Analogously, starting from the minimal action and iterat-
ing upward, one can find the minimal equilibrium point.

This also means that dynamics that iterate on best re-
sponse dynamics will generally converge to equilibrium
points in such games (e.g., see Milgrom and Roberts,
1990).



Games with strategic substitutes

Moving beyond games of strategic complements, exis-
tence of equilibria and the structure of the set are no
longer so nicely behaved.

Existence of equilibria can be guaranteed along standard
lines: for instance equilibria exist if  is a nonempty,
compact, and convex subset of a Euclidean space and 
is continuous and quasi-concave for every .

This covers the canonical case where  are the mixed
strategies associated with an underlying finite set of pure
actions and  is the expected payoff and hence quasi-
concave.

Nonetheless, this means that pure strategy equilibria may
not exist unless the game has some specific structure.



In addition, with the lack of lattice structure, best re-
sponses are no longer so nicely ordered and equilibria in
many network games can be more difficult to find.

Some games of strategic substitutes on networks still have
many important applications and are tractable in some
cases.

For example, consider the best-shot public goods game
discussed above.

As we showed above, best-shot public goods games on a
network always have pure strategy equilibria, and in fact
those equilibria are the situations where the players who
take action 1 form a maximal independent set.



Finding all of the maximal independent sets is computa-
tionally intensive, but finding one such set is easy.

Here is an algorithm that finds an equilibrium.



At a given step , the algorithm lists a set of the providers
of the public good (the independent set of nodes), ,

and a set of non-providers of the public good (who will
not be in the eventual maximal independent set of nodes),
, where the eventual maximal independent set will
be the final .

In terms of finding an equilibrium to the best-shot game,
the final  is the list of players who take action 1, and
the final  is the set of players who take action 0.



Step 1: Pick some node  and let 1 = {} and 1 =

(g).

Step k: Iterate by picking one of the players  who is not
yet assigned to sets −1 or −1. Let  =
−1 ∪ {} and  = −1 ∪(g).

End: Stop when  ∪ =  .



More generally, one might ask the question of whether it
is possible to find the “best” equilibrium in the best-shot
game.

Given that in every equilibrium all players get a payoff of
either 1 or 1− , minimizing the number of players who
pay the cost  would be one metric via which to rank
equilibria.

As discussed by Dall’Asta, Pin and Ramezanpour (2011),
finding such equilibria can be difficult but finding them
(approximately) through an intuitive class of mechanisms
that tradeoff accuracy against speed is possible.



There are other games of strategic substitutes where at
least some equilibria are also easy to find.

Example 3 A “Weakest-Link” Public Goods Game

Here each player chooses some level of public good con-
tribution (so  ⊂ R+) and the payoff to a player is the
minimum action taken by any player in his or her neigh-
borhood (in contrast to the maximum, as in the best-shot
game).

We have:

( (g)
) = min

∈(g)∪{}

n

o
− ()

where  is an increasing, convex and differentiable cost
function.



In the case where there is a smallest ∗ such that 0(∗) ≥
1, and each player has at least one neighbor in the net-
work ,

any profile of actions where every player chooses the same
contribution  = ∗ is an equilibrium of this game.

In a network in which every player has at least one neigh-
bor, everyone playing  = 0 is also an equilibrium, and
so the game will have multiple equilibria when it is non-
degenerate.



Continuous Actions, Quadratic
Payoffs,

and Strategic Complementarities



Who’s Who in Networks.
Wanted: the Key Player
Coralio Ballester, Antoni Calvó-

Armengol and Yves Zenou

Econometrica 2006













When σij > 0, an increase in the effort xj of agent j
creates an incentive for i to increase his level of activity
xi. We then talk of strategic complementarity in efforts.

When σij < 0, instead, an extra effort from j triggers
a downards shift in i’s effort in response. We say that
efforts are strategic substitutes.





The General Model

• We can decompose bilateral influences like

where G represents a network of local 
complementarities, 0 ≤ gij ≤ 1

∑ 

Net Self-
Substitutability


−I

Global
Substitutability


−U

Local

Complementarity


G



I is the n−square identity matrix and U the n−square
matrix of ones.

Σ =− βI− γU+ λG

with β > 0, γ ≥ 0 and λ > 0.

The pattern of bilateral influences results from the com-
bination of an idiosyncratic effect, a global interaction
effect, and a local interdependence component.

The idiosyncratic effect reflects (part of) the concavity of
the payoff function in own efforts.

The global interaction effect is uniform across all players
(matrix U) and corresponds to a substitutability effect
across all pairs of players with value −γ ≤ 0.

The local interaction component captures the (relative)
strategic complementarity in efforts that varies across
pairs of players, with maximal strength λ and population
pattern reflected by G.



The decomposition is depicted in Figure 1.

This is just a centralization (β and λ are defined with
respect to γ)

followed by a normalization (the gijs are in [0, 1]) of the
cross effects.

The figure in the upper panel corresponds to σij of either
sign (the case σij ≤ 0, for all i 6= j is similar)

while the figure in the lower panel corresponds to σij ≥
0, for all i 6= j (recall that we assume σ < 0).



β

λ

λgij

γ

0σij σσσ

β λ
γ = 0

λgij

0 σijσσ σ



The General Model

• Three players

∑ 

−6 1/2 −1

1/2 −6 1
−1 1 −6

u1x 1 , x 2 , x 3  x 1 − 3x 1
2  1

2 x 1x 2 − x 1x 3

u2x 1 , x 2 , x 3  x 2 − 3x 2
2  1

2 x 1x 2  x 2x 3

u3x 1 , x 2 , x 3  x 3 − 3x 3
2 − x 1x 2  x 1x 3

1

2

3

∑ 
−


−5

1 0 0

0 1 0
0 0 1 −


−1

1 1 1

1 1 1
1 1 1 


2

0 3/4 0

3/4 0 1
0 1 0



Explanation of this example:

Σ =

⎛⎜⎝ −6 1/2 −1
1/2 −6 1
−1 1 −6

⎞⎟⎠
σ = min{σij} = −1 and σ = max{σij} = 1

OBS: σ and σ do not include σii = σ.

σii = σ = −6

γ = −min{σ, 0} = −min{−1, 0} = 1

λ = σ + γ = 1 + γ = 2



gij =
σij + γ

λ
but 0 ≤ gij ≤ 1

Thus

G =

⎛⎜⎜⎜⎝
max

n−6+1
2 , 0

o
= 0

1/2+1
2 = 3

4
−1+1
2 = 0

1/2+1
2 = 3

4 max
n−6+1

2 , 0
o
= 0 1+1

2 = 1
−1+1
2 = 0 1+1

2 = 1 max
n−6+1

2 , 0
o
= 0

⎞⎟⎟⎟⎠

As a result

Σ = −βI− γU+ λG

= −5× I− 1×U+ 2×G





In our example, we have:

α = 1 , γ = 1 , λ = 2 , β = 5

Since for all i = 1, 2, 3

ui = αxi −
1

2
(β − γ)x2i − γ

3X
j=1

xixj + λ
3X

j=1

gijxixj

we have:

u1 = αx1 −
1

2
(β − γ)x21 − γ

3X
j=1

x1xj + λ
3X

j=1

g1jx1xj

= x1 −
1

2
4x21 − x1x1 − x1x2 − x1x3 + 2

3

4
x1x2

= x1 − 3x21 +
1

2
x1x2 − x1x3

Similarly

u2 = x2 − 3x22 +
1

2
x1x2 + x2x3

u3 = x3 − 3x23 − x1x2 + x1x3





The network Bonacich centrality To each network g, we associate its

adjacency matrix G = [gij].

Symmetric zero-diagonal square matrix that keeps track of the direct

connections in g.

The kth power Gk = G(k times)... G of the adjacency matrix G keeps

track of indirect connections in g.

The coefficient g
[k]
ij in the (i, j) cell of Gk gives the number of paths of

length k in g between i and j.



Example Network g with three individuals (star)

t t t
2 1 3

Figure 1

Adjacency matrix :

G =

⎡⎢⎣ 0 1 1
1 0 0
1 0 0

⎤⎥⎦

G2k =

⎡⎢⎣ 2
k 0 0

0 2k−1 2k−1

0 2k−1 2k−1

⎤⎥⎦ and G2k+1 =

⎡⎢⎣ 0 2k 2k

2k 0 0

2k 0 0

⎤⎥⎦ , k ≥ 1



G3 =

⎡⎢⎣ 0 2 2
2 0 0
2 0 0

⎤⎥⎦

G3: two paths of length three between 1 and 2: 12 → 21 → 12 and

12→ 23→ 32.

no path of length three from i to i



For all integer k, define:

bki (g) =
nX

j=1

g
[k]
ij

This is the sum of all paths of length k in g starting from i.

Next, let φ ≥ 0, and define:

bi(g,φ) =
+∞X
k=0

φkbki (g)

This is the sum of all paths in g starting from i, where paths of length

k are weighted by the geometrically decaying factor φk.



For φ small enough, this infinite sum takes on a finite value.

b(g, φ) =
+∞X
k=0

φkGk · 1 = [I−φG]−1 · 1, (2)

where 1 is the vector of ones.

b(g, φ) Bonacich network centrality of parameter φ in g .

bi(g,φ) as the Bonacich centrality of agent i in g.

To each agent, it associates a value that counts the total number of

direct and indirect (weighted) paths in the network stemming from this

agent.



Example Consider the network g in Figure 1.

t t t
2 1 3

Figure 1

When φ is small enough, the vector of Bonacich network centralities is:

b (g, φ) =

⎡⎢⎣ b1 (g, φ)
b2 (g, φ)
b3 (g, φ)

⎤⎥⎦ = 1

1− 2φ2

⎡⎢⎣ 1 + 2φ1 + φ
1 + φ

⎤⎥⎦ .



The Bonacich centrality of node i is bi(g, a) =
Pn
j=1mij(g, a),

and counts the total number of paths in g starting from
i.

It is the sum of all loops starting from i and ending at i,
and all outer paths that connect i to every other player
j 6= i:

bi(g, a) = mii(g, a)| {z }
self−loops

+
X
j 6=i

mij(g, a)| {z }
out−paths

.

Note that, by definition,mii(g, a) ≥ 1, and thus bi(g, a) ≥
1.







Best-reply functions

BRi(y−i) = φ
n∑

j=1

gijyj +
M∑

m=1

βmx
m
i − pf + ηk + εi

Alice︸ ︷︷ ︸
yA↑∆

→ Bob︸ ︷︷ ︸
yB↑φ∆

→ Charlie︸ ︷︷ ︸
yC↑φ

2∆

• Direct complementarities induce indirect complementarities of all

possible order.

• There is a discount of distance φdistance.

• This means that φ cannot be too large.



Spectral radius: Why?

Diagonalize G :

G = CDGC
−1 where DG =


λ1 (G) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 λn (G)


Since

∑
k≥0

βkGk = C

(
∑
k≥0

βkDk
G

)
C−1

the sum converges if and only if ∑k≥0 (βλmax (G))
k converges, i.e.

βλmax (G) < 1.
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Proof of Proposition

Simple way of proving this Proposition.

This game is a potential game (Monderer and Shapley, 1996)

A game is a potential game if there is a numerical function P : X → R

such that, for each i ∈ N , for each x−i ∈ X−i, and for each xi, zi ∈ Xi,

ui(xi, x−i)− ui(zi, x−i) = P (xi, x−i)− P (zi, x−i)



Potential Games and Functions



Monderer and Shapley (GEB 1996) define potential games as games

that admit a potential function  .

A function  :  → R is called an ordinal potential function for the

game if for each  ∈  and all − ∈ −, we have:

( −) ≥ (
0
 −)⇐⇒  ( −) ≥  (0 −)

∀ ∈  and ∀− ∈ −

A potential function is a global function defined on the space of pure

strategy profiles such that the change in any player’s payoffs from a

unilateral deviation is exactly matched by the change in the potential

 .



A function  :  → R is is called an exact potential function for the

game if for each  ∈  and all − ∈ −, we have:

( −)− (
0
 −) =  ( −)−  (0 −)

∀ ∈  and ∀− ∈ −



A finite game (or a game with a finite number of players but with

infinite strategy spaces) is a potential game [ordinal potential game,

exact potential game] if there exists a function  :  → R such that

 ( −) gives information about ( −) for each .

If so,  is referred to as the potential function.

The potential function has a natural analogy to “energy” in physical

systems.

It will be useful both for locating pure strategy Nash equilibria and also

for the analysis of “myopic” dynamic network formation models.

The potential function allows for a neat and explicit characterization of

the stationary distribution of the Markov chain (as a Gibbs measure).



A finite game  is called an ordinal (exact) potential game if it admits

an ordinal (exact) potential.

We refer to ordinal potential games as potential games, and only add

the “exact” qualifier when this is necessary.

A game  with infinite strategy space and finite number of players is a

potential game if it admits a continuous potential function.



When the payoff functions are twice continuously differentiable, Mon-

derer and Shapley (1996) present a convenient characterization of po-

tential games.

That is, a game is a potential game if and only if the cross partial

derivatives of the utility functions for any two players are the same, i.e.,

2(x−)


=
2(x−)


=

2 (x−)


∀ 

This equation can be used to identify potential games. If this holds, the

potential function  can be calculated by integrating this equation.

Similar conditions hold for nondifferentiable payoff functions by replacing

“differentials” with “differences”.



Theorem: Every potential game has at least one pure strategy Nash

equilibrium.

Proof: The global maximum of an ordinal potential function is a pure

strategy Nash equilibrium.

To see this, suppose that ∗ corresponds to the global maximum.

Then, for any , we have, by definition of a NE,

 (∗  
∗
−) ≥  (0 

∗
−) for all  ∈ 

But since  is a potential function,

(
∗
  

∗
−) ≥ (

0
 

∗
−)⇐⇒  (∗  

∗
−) ≥  (0 

∗
−) for all  ∈ 

Therefore, (
∗
  

∗
−) ≥ (

0
 

∗
−) for all  ∈  and for all . Hence

∗ is a pure strategy Nash equilibrium.



Note, however, that there may also be other pure strategy Nash equi-

libria corresponding to local maxima.



Example: Cournot

Consider a symmetric oligopoly Cournot competition with linear cost

functions () = , 1 ≤  ≤ .

Linear inverse demand function:  () = − 

Payoff (Profit)

( −) =  () −  =  − 
=X
=1

 − 



Define the Potential function as:

 ( −) =
=X
=1

( −)−


2

=X
=1

=X
=1 6=



= 
=X
=1

 − 
=X
=1

2 − 
=X
=1

=X
=1 6=

 − 
=X
=1



−
2

=X
=1

=X
=1 6=



= 
=X
=1

 − 
=X
=1

2 − 
=X
=1

 −


2

=X
=1

=X
=1 6=



Here the potential  ( −) is constructed by taking the sum of all

utilities, a sum that is corrected by a term which takes into account the

externalities exerted by each agent .



Determine

( −)− (
0
 −)

=  − 
=X
=1

 −  −
⎛⎝0 − 

=X
=1

0 − 0

⎞⎠
= (− )

³
 − 0

´
− 

⎛⎝ =X
=1 6=

 + 

⎞⎠+ 0

⎛⎝ =X
=1 6=

 + 0

⎞⎠
= (− )

³
 − 0

´
− 

³
2 − 02

´
− 

=X
=1 6=

³
 − 0

´



Similarly

 ( −)−  (0 −)

= (− )

⎛⎝=X
=1

 −
=X
=1

0

⎞⎠− 

⎛⎝=X
=1

2 −
=X
=1

02

⎞⎠
−
2

⎛⎝=X
=1

=X
=1 6=

 −
=X
=1

=X
=1 6=

0

⎞⎠
= (− )

³
 − 0

´
− 

³
2 − 02

´
− 

2

=X
=1 6=



⎛⎝=X
=1

 −
=X
=1

0

⎞⎠
= (− )

³
 − 0

´
− 

³
2 − 02

´
− 

2

=X
=1 6=

³
 − 0

´



Thus  :  → R is an ordinal potential function for the game if for

each  ∈  and all − ∈ − since we have:

( −) ≥ (
0
 −)⇐⇒  ( −) ≥  (0 −)

since

(− )
³
 − 0

´
− 

³
2 − 02

´
≥ 

=X
=1 6=

³
 − 0

´

≥ 

2

=X
=1 6=

³
 − 0

´



Exact Potential function:

 ( −) = 
=X
=1

 − 
=X
=1

2 − 
=X
=1

=X
=1 6=

 − 
=X
=1





Indeed

 ( −)−  (0 −)

= (− )
³
 − 0

´
− 

³
2 − 02

´
− 

=X
=1 6=



⎛⎝=X
=1

 −
=X
=1

0

⎞⎠
= (− )

³
 − 0

´
− 

³
2 − 02

´
− 

=X
=1 6=

³
 − 0

´
= ( −)− (

0
 −)



In that case

(q−)


= − − 2 − 
=X

=1 6=
 and

2(q−)


= −

 (q−)


= − − 2 − 
=X

=1 6=
 and

2 (q−)


= −



In our case

( −) =  −
1

2
( − )2 − 

X
=1

 + 
X

=1



For simplicity assume  = 0 and  = 1 so that

( −) =  −
1

2
2 + 

X
=1





Define the Potential function as:

 ( − )

=
=X
=1

( −)−


2

=X
=1

=X
=1



= 
=X
=1

 −
1

2

=X
=1

2 + 
=X
=1

X
=1

 −


2

=X
=1

=X
=1



= 
=X
=1

 −
1

2

=X
=1

2 +


2

=X
=1

X
=1





Matrix form

 ( − ) = xT1− 1
2
xTx+ xT



2
Gx

= xT1− 1
2
xT (I−G)x

Here the potential  ( − ) is constructed by taking the sum of all

utilities, a sum that is corrected by a term which takes into account the

network externalities exerted by each agent .



It is well-known (see e.g., Monderer and Shapley, 1996) that the set of

solutions of the program maxx ( − ) forms a subset of the set
of Nash equilibria of this game.

This program has a unique interior solution if the potential function

 ( − ) is strictly concave on the relevant domain.



Nash Equilibrium: Potential Function
• Unique, stable, etc.? 

• Reformulate equilibrium conditions as a max problem:

• A potential function φ for a game with payoffs Vi

φ(xi,x-i) − φ(xi,x-i) = Vi(xi,x-i) − Vi(xi,x-i)

for all xi, xi and for all i. [Monderer & Shapley (1996)]

• Game with quadratic payoffs, Ũi, has an exact potential:
φ(x) = ∑i[(xi − ½xi²) − ½δ∑i,jgijxixj]



Nash Equilibrium: Potential Function
• Proposition

x is a Nash equilibrium of any game with best response fi(x) 
iff x satisfies the Kuhn-Tucker conditions of the problem

max φ(x)   s.t    xi ≥ 0     i

• Proof
• x is equilibrium for game with payoffs Ũi

•no player has an incentive to deviate, since at x, K-T conditions imply first-
order conditions satisfied, and second order conditions satisfied φii< 0

• equilibria are same for games with best response fi(x)

• Thus, the equilibria correspond to the maxima of the 
potential function.



The Hessian matrix of  ( − ) is easily computed to be − (I−G).

The matrix I−G is positive definite if for all non-zero x we have

x> (I−G)x  0⇔  

Ã
x>Gx
x>x

!−1

By the Rayleigh-Ritz theorem, we have 1(G) = supx6=0
µ
x>Gx
x>x

¶
.

Thus a necessary and sufficient condition for having a strict concave

potential is that 1(G)  1.



Example 2. Consider the network g in Figure 1.

t t t
2 1 3

Figure 1

Largest eigenvalue: 21/2. When d
³
21/2

´
< c, the unique Nash equilib-

rium is:

x∗1 = a
c+ 2d

c2 − 2d2
and x∗2 = x∗3 = a

c+ d

c2 − 2d2
.





Dyads

No social interactions.

Then, the utility of each agent i would be given by:

ui(xi) = αxi −
1

2
x2i

The unique symmetric equilibrium is:

x∗ni = α



Now, in order to understand the general model and to
see the role of λ and γ, let us take the simplest possible
network, that is n = 2 and each player has a link with
the other, that is g12 = g21 = 1.

The adjacency matrix

G =

Ã
0 1
1 0

!

Two eigenvalues: 1,−1. Thus µ1(G) = 1.

The network locations in g are interchangeable. In this
case, the utility is now given by:

ui(x1, x2) = αxi −
1

2
x2i − γ

³
x2i + xixj

´
+ λxixj

where 0 ≤ γ < 1. Compared to our utility function
β = 1 + γ.



The first order condition are:

∂ui
∂xi

= α− (1 + 2γ)xi − (γ − λ)xj = 0

Since we have a dyad, the unique symmetric equilibrium
is given by:

x∗ =
α

1− λ+ 3γ

Observe that since β = 1 + γ and µ1(G) = 1,

β > λµ1(G)⇔ λ < 1 + γ

Guarantees this solution to be strictly positive.



Check with Theorem

x∗ =
α

β + γb(g, λ/β)
b(g, λ/β)

Here

b(g, a) =

"
I−λ

β
G

#−1
· 1

=

"Ã
1 0
0 1

!
− λ

β

Ã
0 1
1 0

!#−1Ã
1
1

!

=

Ã
1 −λ/β

−λ/β 1

!−1Ã
1
1

!

=

⎛⎜⎝ β2

β2−λ2
λβ

β2−λ2
λβ

β2−λ2
β2

β2−λ2

⎞⎟⎠Ã 1
1

!
=

⎛⎝ β
β−λ
β

β−λ

⎞⎠



Thus Ã
x∗1
x∗2

!
=

α

β + γb(g, λ/β)

⎛⎝ β
β−λ
β

β−λ

⎞⎠

where

b(g, λ/β) = b1(g, λ/β) + b2(g, λ/β) =
2β

β − λ

We have Ã
x∗1
x∗2

!
=

Ã α
β−λ+2γ

α
β−λ+2γ

!

Now since β = 1 + γ, we have:Ã
x∗1
x∗2

!
=

Ã α
1−λ+3γ

α
1−λ+3γ

!



Suppose first that γ = 0, i.e. there is no global substitu-
ability. We obtain

x∗ =
α

1− λ

In the dyad, agents rip complementarities from their part-
ner, and choose an effort level above the optimal value for
an isolated agent (x∗ = α). The factor 1/(1− λ) > 1

is often referred to as the social multiplier.

Suppose now that λ = 0. We obtain

x∗ =
α

1 + 3γ

Equilibrium efforts are decreasing in γ. Indeed, global
substituabilities add to the idiosyncratic concavity in one’s
efforts, an exhaust decreasing marginal returns below the
optimal value for an isolated agent. The general expres-
sion results from a combination of both effects.



Ex ante Heterogeneity in Games on

Networks



More general network game with linear quadratic payoffs.

N = {1, . . . , n} is a finite set of agents.

Each agent i ∈ N selects zi ≥ 0. Payoffs are:

ui(z) = αizi +
1

2
σiiz

2
i +

X
j 6=i

σijzizj.



Let α = (α1, ..., αn) and Σ = [σij].

Game Γ (α,Σ) with players in N such that α > 0 (that is, αi > 0, for

all i ∈ N) and σii < min{0,min{σij : j 6= i}}, for all i ∈ N .

We further assume that σii = σ11, for all i ∈ N . This is without loss

of generality.

Indeed, let D = diag(1, σ11/σ22, ..., σ11/σnn). This is a diagonal ma-

trix with a strictly positive diagonal. It is readily checked that the Nash

equilibria of Γ (α,Σ) and that of Γ (Dα,DΣ) coincide, where the di-

agonal terms of DΣ are all equal to σ11.

Let I be the identity matrix and J the matrix of ones.



Additive decomposition of the interaction matrix:

Σ = −βI− γJ+ λG.

Own-concavity effects −βI

Global substitutability effects −γJ

Local (network) complementarity effects +λG.

Following this decomposition, payoffs can now be rewritten as:

ui(z) = αizi −
1

2
(β − γ) z2i − γ

nX
j=1

zizj + λ
nX

j=1

gijzizj



Definition 0.1 Given a vector u ∈ Rn+, and a ≥ 0 a small enough

scalar, we define the vector of u-weighted centrality of parameter a in

the network g as:

wu (g, a) =
³
I− aG−1

´
u =

+∞X
p=0

apGpu.

Katz-Bonacich centrality b (g, a) corresponds to the u-weighted cen-

trality with u = 1 (where 1 is the vector of ones)



Denote by ω (G) the largest eigenvalue of G. For all vector u ∈ Rn, let
u = u1 + ...+ un.

Theorem 0.1 Consider a game Γ (α,Σ) with α > 0 and Σ is decom-

posed additively.

(a) Suppose first that α = α1. Then, Γ (α,Σ) has a unique Nash

equilibrium in pure strategies if and only if β > λω (G). This equilibrium

z∗ is interior and given by:

z∗ =
α

β + γw1 (g, λ/β)
w1 (g, λ/β) . (1)



(b) Suppose now that α 6= α1. Let αmax = max {αi | i ∈ N} and
αmin = min{αi | i ∈ N}, with αmax > αmin > 0. If β > λω (G) +

nγ (αmax/αmin − 1), then Γ (α,Σ) has a unique Nash equilibrium in

pure strategies z∗, which is interior and given by:

z∗ =
1

β

"
wα (g, λ/β)−

γwα (g, λ/β)

β + γw1 (g, λ/β)
w1 (g, λ/β)

#
. (2)



When α = α1, the equilibrium existence, uniqueness (and interiority)

condition is independent of γ, the global level of substitutabilities, and

only depends on the own concavity term β and the network of local

complementarities λG.

For general α, a necessary and sufficient condition for equilibrium ex-

istence and uniqueness is that −Σ has all its principal minors strictly

positive, that is, −Σ is a P−matrix in the language of the linear com-
plementarity problem.

The P−matrix condition does not guarantee that the equilibrium is inte-
rior. Besides, the P−matrix property is computationally very demanding
and economically nonintuitive.





In words, the denser the pattern of local complementari-
ties, the higher the aggregate outcome, as players can rip
more complementarities in g0 than in g.

The geometric intuition for this result is clear. Recall
that b(g, λ∗) counts the total number of weighted paths
in g. This is obviously an increasing function in g (for the
inclusion ordering), as more links imply more such paths.



Application 1 : Crime networks

There are  criminals, each exerting a level of crime 
that results from a trade off between the costs and ben-
efits of criminal activities.

The expected utility of criminal  is:

(x g) = (x)− (xg) (1)

(x) are the proceeds, (x g) the apprehension prob-
ability, and  the corresponding fine.

The cost of committing crime (x g) increases with
, as the apprehension probability increases with one’s
involvement in crime, hitherto, with one’s exposure to
deterrence.



Also, and consistent with standard criminology theories,
criminals improve illegal practice through interactions with
their direct criminal mates.

Formally, criminals are connected through a friendship
network r, where  = 1 when  and  are directly related
to each other. For instance, let:

⎧⎨⎩  (x) = 
h
1− 

P
=1 

i
(xg) = 0

h
1− 

P
=1 

i 



The expected utility then becomes:

(xg) = (1− ) − 
X

=1

 + 
X

=1



(2)

where  = 0 is the marginal expected punishment
cost for an isolated criminal, and −  0 captures a
congestion in the crime market.

The utility function (2) coincides with the expression our
general utility with  = 1− ,  =  =  and  = .

When 1(g)  , the unique Nash equilibrium of the
crime game with payoffs (2) is:

x∗ =
1− 



1

1 + (g )
b(g 




)



Application 2 : R&D collaboration networks

R&D partnerships have become a widespread phenom-
enon

Consider a standard Cournot game with  (ex ante) iden-
tical firms, each of them choosing the quantity .

As in Goyal and Moraga-González (2001) and Goyal and
Joshi (2003), firms can form bilateral agreements to jointly
invest in cost-reducing R&D activities.

We set  = 1 when firms  and  set up a collaboration
link.

Firm ’s marginal cost is:

(qg) = 0 − 
X
 6=



Here, 0  0, represents the marginal cost of an isolated
firm, while   0 is the cost reduction induced by each
link it forms.



 is the price of good . This gives the inverse demand
function for firm 

 = −
X

=1



The profit function of firm  is:

(qg) =  − (qg)

=

⎡⎣− X
=1



⎤⎦  −
⎡⎣0 − 

X
 6=



⎤⎦ 
= (− 0)  −

X
=1

 + 
X
 6=



Again, this objective function is a particular case of our
general utility, where  = − 0  0 and  =  = 1.



We conclude that the Cournot game has a unique Nash
equilibrium in pure strategies:

q∗ =
(− 0)

1 + (g )
b(g )

when 1  1(g).

In particular, the comparative statics Theorem implies
that the overall industry output increases when the net-
work of collaboration links expands, irrespective of this
network geometry and the number of additional links.

For the case of a linear inverse demand curve, this gener-
alizes the findings in Goyal and Moraga-González (2001)
and Goyal and Joshi (2003), where monotonicity of indus-
try output is established for the case of regular collabo-
ration networks, where each firm forms the same number
of bilateral agreements.

For such regular networks, links are added as multiples of
, as all firms’ connections are increased simultaneously.



Application 3 : International trade networks

Consider a set of countries N = {1 2     } and a
network g representing links between them.

A link indicates the presence of an (import or export)
trade relationship between two countries.

Each country  provides a volume  ≥ 0 of trade.

Countries are local monopolists and the inverse demand
function for country  ∈ N is given by:

 = 1− 

with a parameter   0.

Products produced by different countries are not substi-
tutable.



The marginal cost of production of each country  is
(xg) ≥ 0.

(xg) = 0 − 
X

=1



where 0  0 represents a country’s marginal cost when
it has no links, and   0 is the cost reduction induced
by each trade relationship formed by a country.

Production costs decrease with the volume of trade of
the trading partner due to technology spillovers



The profit function for country  is  in a trade network
g is given by

(qg) =  − (qg)

=

⎡⎣− X
=1



⎤⎦  −
⎡⎣0 − 

X
 6=



⎤⎦ 
= (− 0)  −

X
=1

 + 
X
 6=



Unique Nash equilibrium: Bonacich centrality



Application 4 : Conformism and social norms

Each individual has a utility that depends on the dif-
ference between her behavior and that of her reference
group.

Each individual chooses an action  ≥ 0 and loses utility
when failing to conform to the social norm of her refer-
ence group, which is equal to the average action of its
members.

The network  = {1     } is a finite set of indi-
viduals. Individuals are connected by a network of social
connections.

We represent social connections by a graph/network g.
To any network g, we can associate its adjacency matrix,
that we denote by G.



The coefficients of the matrix G are the s, 1 ≤   ≤
. When  and  are friends we set  = 1. Let also
 = 0 for all . Thus, by definition, each cell inG takes
on values zero or one. Given our convention that  = 0,
the diagonal of G consists on zeros. Since  = , the
matrix G is symmetric.

Each player  has  =
P
=1  direct links in g, and

thus the average action of her friends, that is the action
of her reference group, is given by:

 =
1



X
=1 6=

 =
X

=1 6=
∗



Preferences Each individual  = 1   selects an ef-
fort/action  ≥ 0, and obtains a payoff (xg), given
by the following utility function, with      0:

(xg) =  +  − 2 − ( −  )
2 (3)

The utility function (3) is such that each individual wants
to minimize the social distance between herself and her
reference group, where  is the parameter describing the
taste for conformity.

Indeed, the individual loses utility (− )
2 from fail-

ing to conform to others.

The average action of the reference group of agent ,  ,
explicitly depends on the underlying network structure,
and thus each agent has a different  depending on
her location in the network.



Bilateral influences of this utility function.

2(xg)


=

⎧⎪⎨⎪⎩
−2( + ), when  = 
0, when  6=  and  = 0
2  0, when  6=  and  = 1



Since, when  6= ,   0, an increase in effort from 

triggers a downwards shift in ’s response and thus efforts
are strategic complements from ’s perspective within the
pair ( ).

This utility function (3) thus coincides with

 =  −
1

2
( − )2 − 

X
=1

 + 
X

=1

∗

with  = 2( + ),  = 0,  = 2 and ∗ = .
Note that g∗ is a row-normalization of the initial friend-
ship network g, as illustrated in the following example,
where G and G∗ are the adjacency matrices of, respec-
tively, g and g∗.



1 2 3

G =

⎡⎢⎣ 0 1 0
1 0 1
0 1 0

⎤⎥⎦ and G∗ =

⎡⎢⎣ 0 1 0
12 0 12
0 1 0

⎤⎥⎦ 

Observe that G∗ is a stochastic matrix, that is ∗ ≥ 0

and
P
 
∗
 = 1. This implies that 1(G

∗) = 1 and

G∗ is also a stochastic matrix, that is ∗[] ≥ 0 andP
 
∗[]
 = 1, ∀.

Applying our Theorem, it is easy to see that this con-
formity game with payoffs (3) has a unique Nash equi-
librium in pure strategies and, whatever the structure of
the network, this equilibrium is always symmetric, that is
∗ = ∗1 =  = ∗ and ∗ = ∗1 =  = ∗ ,
and is given by:

∗ = ∗ =


2
(4)



In particular, the equilibrium Bonacich-centrality measure
is the same for all individuals and is equal to:

1(g
∗



 + 
) =  = (g

∗


 + 
) =

 + 



To prove this result, one has to calculate the Bonacich
vector since it is the only source of heterogeneity between
players. In a conformist game, we have:

(g
∗ ) = (g

∗ ) +
X
 6=

(g
∗ )

= 
X

=1

∗ + + 
X

=1


∗[]
 + 

=
+∞X
=1

 =
1

1− 

The equilibrium value (4) is exactly the value found by
Akerlof (1997), page 1010.



Even if individuals are ex ante heterogeneous because of
their location in the network, in a conformist equilibrium
where each individual would like to conform as much as
possible to the norm of her reference group, all individuals
will exert the same effort level.

The distribution of population does not matter in equi-
librium even if it matters ex ante. The only relevant
statistics is the average.



Local aggregate or local average?

1. The local-aggregate network model

An individual’s utility depends on the aggregate effort
level of her friends.

 the effort level of individual  in network 

 = (1  )
0 the population effort profile in net-

work .

Utility:

() =
³
 +  + 

´
−

1

2
2+1

P
=1



(5)
where 1 ≥ 0.



Best-reply function for individual ,

 = 1
P
=1

 +  +  +  (6)

Denote:  = ++, Π = (1 · · ·  )0,
and max = max  the highest degree of network .

Proposition 1 If 0 ≤ 1
max
  1, then the network

game with payoffs (5) has a unique interior Nash equilib-
rium in pure strategies given by (6). In matrix form, this
can be written as:

 = ( − 1)
−1Π (7)



2. The local-average network model

The average effort level of friends affects an individual’s
utility.

Denote

 =
P

∈

∗

the average effort of individual ’s friends.

Payoff

() =
³
∗ + ∗ + ∗

´
−

1

2
2−



2
(−)2

(8)
with  ≥ 0.



Best-reply function of :

 = 2
P
=1

∗ +  +  +  (9)

where 2 = (1 + ),  = (1 − 2)
∗
,  =

(1− 2)
∗
, and  = (1− 2)

∗
.

Proposition 2 If 0 ≤ 2  1, then the network game
with payoffs (8) has a unique interior Nash equilibrium in
pure strategies given by (9). In matrix form, this can be
written as:

 = ( − 2
∗
)
−1Π (10)



3. The hybrid network model

Integrating local-aggregate and local-average effects into
the same model.

Utility function

() =
³
∗ + ∗ + ∗

´
 −

1

2
2

+1
P
=1

 −
2
2
( − )

2 (11)

where 1 ≥ 0 and 2 ≥ 0.



Best-reply function of individual  is:

 = 1
P
=1

+2
P
=1

∗+++

(12)
where 1 = 1(1 + 2), 2 = 2(1 + 2),  =
(1−2)

∗
,  = (1−2)

∗
, and  = (1−2)

∗
.

Proposition 3 If 1 ≥ 0, 2 ≥ 0 and 1max +2  1,
then the network game with payoffs (11) has a unique
interior Nash equilibrium in pure strategies given by (12).
In matrix form, this can be written as:

 = ( − 1 − 2
∗
)
−1Π (13)



Local aggregate versus local average

Local aggregate: Best-reply function for individual ,

 = 1
P
=1

 +  +  + 

or

 = 1 + Π

Local average: Best-reply function for individual ,

 = 2
P
=1

∗ +  +  + 

or

 = 1
∗
 + Π









The Bonacich centrality of player i counts the number of
paths in g that stem from i.

The intercentrality counts the total number of such paths
that hit i;

It is the sum of i’s Bonacich centrality and i’s contribu-
tion to every other player’s Bonacich centrality.

Holding bi(g,a) fixed, ci(g,a) decreases with the propor-
tion of i’s Bonacich centrality due to self-loopsmii(g,a)/bi(g,a).





Key players with ex ante heterogeneity . For ex-
ample,  =  +  + 

Definition 1 Assume that each agent has an ex ante
heterogeneity of  for all . Then, for all networks  and
for all , the intercentrality measure of a player  is:

( α) =
α( )

P
=1( )

( )
(14)

where

bα(g ) =
+∞X
=0

Gα = [I−G]−1α

and the sum of weighted Bonacich centralities

α(g ) =
X
=1

α (g ) = 1
>Mα

and

M(g ) = [I−G]−1 =
+∞X
=0

G



Example

Network of four delinquents (i.e. n = 4) with

(α1, α2, α3, α4) = (0.1, 0.2, 0.3, 0.4)

and

4 21

3



G =




0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0






Decay factor φ = 0.3.

Nash equilibrium:



y∗1
y∗2
y∗3
y∗4


 =




bα,1(g, φ)
bα,2(g, φ)
bα,3(g, φ)
bα,4(g, φ)


 =




0.66521
0.60377
0.68068
0.59958




Total crime effort:

y∗ = y∗1 + y∗2 + y∗3 = bα(g, φ) = 2.549

Delinquent 3 has the highest weighted Bonacich and thus provides the

highest crime effort.



Intercentrality: di∗(g, φ) = bα(g, φ)− b
[−i]
α (g, φ)

Remove delinquent 1.

4 2

3



We have now a network with three delinquents, with (α2, α3, α4) =

(0.2, 0.3, 0.4) and where

G =




0 1 0
1 0 0
0 0 0




Using the same decay factor, φ = 0.3, we obtain:



y∗2
y∗3
y∗4


 =



bα,2(g

[−1], φ)

bα,3(g
[−1], φ)

bα,4(g
[−1], φ)


 =




0.31868
0.3956
0.4




so that the total effort is now given by:

y∗[−1] = y∗2 + y∗3 + y∗4 = b
[−1]
α (g, φ) = 1.114



Thus, player 1’s contribution is

bα(g, φ)− b
[−1]
α (g, φ) = 2.549− 1.114 = 1.435

Doing the similar exercise for individuals 2, 3, 4, we obtain:

bα(g, φ)− b
[−2]
α (g, φ) = 1.244

bα(g, φ)− b
[−3]
α (g, φ) = 1.146

bα(g, φ)− b
[−4]
α (g, φ) = 0.988



Check that the key player is delinquent 1. Formula:

d1∗(g, φ) =
bα,1(g, φ)

∑j=4
j=1mj1(g, φ)

m11(g, φ)

M = (I− φG)−1 =




1.5317 0.65646 0.65646 0.45952
0.65646 1.3802 0.61101 0.19694
0.65646 0.61101 1.3802 0.19694
0.45952 0.19694 0.19694 1.1379




m11(g, φ) = 1.5317



and

j=4∑

j=1

mj1(g, φ) = m11(g, φ) +m21(g, φ) +m31(g, φ) +m41(g, φ)

= 1.5317 + 0.65646 + 0.65646 + 0.45952

= 3.3041

Therefore,

d1∗(g, φ) =
bα,1

∑j=3
j=1mj1(g, φ)

m11(g, φ)

=
0.66521× 3.3041

1.5317
= 1.435

d1∗(g, φ) = bα(g, φ)− b
[−1]
α (g, φ) = 1.435



Is the key player always the more active criminal?

Holding bi(g, φ) fixed, the intercentrality di(g, φ) of player i decreases

with the proportion mii(g, φ)/bi(g, φ) of i’s Bonacich centrality due to

self-loops, and increases with the fraction of i’s centrality amenable to

out-walks.

Not always true.



Consider this network g with eleven criminals.

Figure 1: A bridge network
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We distinguish three different types of equivalent actors in this network,
which are the following:

Type Criminals
1 1
2 2, 6, 7 and 11
3 3, 4, 5, 8, 9 and 10



Role of location in the network

Criminals are ex identical: α = 1

b1 (g, φ) = (I− φG)−1 1

y∗i = b1i (g, φ) and di∗(g, φ) = b1(g, φ)− b
[−i]
1 (g, φ).

Take φ = 0.2.

Table 1a: Key player versus Bonacich centrality in a bridge network

Player Type 1 2 3
yi = bi 8.33 9.17∗ 7.78
di 41.67∗ 40.33 32.67







Joining delinquency networks

Equilibrium networks Allow individuals to choose whether
they want to participate in the crime market or not in the
first stage.

Consider the following two-stage game.

Fix an initial network  connecting agents.

In the first stage, each agent  = 1   decides to enter
the labor market or to become a delinquent.

Second stage, those who become criminals play the effort
game.



Utility

(x) = (1− )−2−
X
 6=

+
X

=1



Nash equilibrium (before KP policy)

If  ()  1, then there exists a unique Nash equilibrium
x∗:

x∗ =
1− 

 [1 + ( )]
b( )



First stage:

 ∈ {0 1} denote ’s decision, where  = 1 (resp.
 = 0) stands for becoming a delinquent (resp. entering
the labor market).

Agents entering the labor market earn a fixed wage (non-
negative scalar)   0.



Definition 2 The extended game is a two stage game
where:

• In stage 1, each player  ∈  decides whether to partic-
ipate ( = 1) or not ( = 0) to the crime market.

• In stage 2, let  be the set of players who decided to
participate. Then, these players play the game in .

• The final utilities are:

(x ) =

(
(x ) if  ∈ 

 otherwise



Definition 3 The set  is supported in equilibrium if
there exists a  and a subgame perfect equilibrium where
the set of players who decide to participate is , given
the outside option .  is also called an (equilibrium)
participation pool of the game at the wage level .



Let E() be the family of sets supported by  at equi-
librium in the extended game.

Proposition 5 Let  ⊆  and ()  1 for all  ∈
\. Then, the set  is supported at equilibrium by the
outside option  if and only if:

max
∈\

(∪{} )

1 + (∪{} )
≤ 1

1− 

√
 ≤ min

∈
( )

1 + ( )

Whenever an equilibrium exists, multiplicity of equilibria
is a natural outcome of the extensive form game.



Finding the key player with criminal participation de-
cision Given that the outside option  is fixed, it is clear
that the two-stage game is supermodular, in the sense
that the payoffs of player  are increasing with respect to
participation decisions of other agents.

Formally, for all  ⊆  ⊆  and  ∈ \ , it is clear
that:

(∪{} ) ≤ (∪{} )



Given that this game usually displays multiple subgame
perfect equilibria in the endogenous delinquency net-
work game, we define ∗( ) to be the maximum aggre-
gate equilibrium delinquency level when the delinquency
network is  and the labor market wage is .

This delinquency level is equal to the total amount of
delinquency in the worst case scenario of maximum delin-
quency.



Let  be an active delinquent, that is  = 1.

Suppose that delinquent  switches his current decision
to  = 0, that is, delinquent  drops out from the delin-
quency pool and enters the labor market instead.

The binary decision profile then becomes c− ν, and the
new set of active delinquents is (c− ν) = (c)\{}.

The drop out of delinquent  from the delinquency pool
also alters the network structure connecting active delin-
quents, as any existing direct link between  and any other
delinquent in (c) is removed.



The new network connecting active delinquents is then
(c)− = (c− ν), and the aggregate delinquency level
becomes:

∗(c− ν) =
1− 




³
(c− ν) 

´
1 + 

³
(c− ν) 

´



The key player problem acquires a different shape in the
setting with endogenous formation of delinquency pools.

Initially, the planner must choose a player to remove from
the network (first stage  = 0).

Then, players play the two-stage delinquency game.

First (second stage,  = 1), they decide whether to enter
the delinquency pool or not.

Second (third stage,  = 2), delinquents choose how
much effort to exert.



Consider again the network with eleven players delin-
quents.
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Recall that, when  = 02 and the network of delinquents
is exogenously fixed (or, equivalently, the outside option
is  = 0), the key player was the player acting as a
bridge, i.e. delinquent 1.



Consider the endogenous delinquency network formation
in the two-stage game.

For low wages, player 1 is also the key player.

When  becomes higher, delinquent 2 becomes the key
player.



Table: KP for two different values of 

Highest aggregate delinquency that results from eliminat-
ing this key player

 = 0001  = 0003
∗(−1 ) 07843 07843
∗(−2 ) 07847 07785
Key Player 1 2

Final delinquency pool rr r rrH­­³³©JJPPA¢r r rrr¢A³³PPH­­JJ© r©Hr r rrr¢A³³PPH­­JJ©



When outside opportunities are high enough, all players
from the same side of the player being removed do not
have enough incentives to enter the delinquency pool at
the first stage of the game.

Hence, we do not get a “large” equilibrium with many
players, and this constitutes an advantage for the planner
who will choose to delete node 2.

How one policy (providing a higher ) increases the ef-
fectiveness of another policy (choosing the key player) in
order to reduce delinquency.

These policies are complementary from the point of view
of their effects on total delinquency, although we are
aware that they may be substitute if we had considered
a budget-restricted planner who had to implement costly
policies.
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Introduction

I We analyze network games under strategic complementarities.
I Agents are embedded in a fixed network and interact with their
network neighbors.

I They play a game characterized by linear best-replies and
positive interactions.

I An agent tends to increase his action if his neighbors increase
theirs.

I Our main new assumption: Actions are bounded from above.
I Natural in many contexts (time).
I Actually hard to think about contexts where actions could be
unbounded.



What did we know?

I With no upper bound, game analyzed in Ballester,
Calvó-Armengol & Zenou (ECA 2006).

I They show the emergence of two domains.
I Under small network effects, unique equilibrium where actions
related to Bonacich centrality.

I Under large network effects, no equilibrium exists due to
explosive positive feedbacks.



What did we know?

I In their empirical implementation, Calvó-Armengol, Pattachini
& Zenou (RES 2009) discuss the possibility of adding bounds.
I “Let us bound the strategy space in such a game rather
naturally by simply acknowledging the fact that students have
a time constraint and allocate their time between leisure and
school work. In that case, multiple equilibria will certainly
emerge, which is a plausible outcome in the school setting”
(p.1254)

I Reasonable conjecture under strategic complements and large
network effects.



What do we find?

I We show that this conjecture does not hold.
I A unique equilibrium always exists.

I We import powerful results from the theory of supermodular
games.
I Lattice structure of the equilibrium set.
I Monotone comparative statics.
I Fast algorithms to compute the equilibrium.



Is uniquenes surprising?

I General tendency of supermodular games to yield multiple
equilibria.
I E.g. Vives (JME 1990), Milgrom & Roberts (ECA 1990).

I Also, general tendency of network games to yield multiple
equilibria.
I Under strategic substitutes, or a mix of substitutes and
complements, multiplicity is the norm, see Bramoullé,
Kranton, D’amours (WP 2011).

I Somehow, linearity and complementarities discipline each
other.



Structural properties of the equilibrium

I We analyze how an agent’s action depends on his position in
the network.
I We find that action and Bonacich centrality are generally not
aligned: An agent who is less central can play a higher action.

I We identify a number of cases where this alignement is
preserved.

I Includes regular graphs, nested split graphs, the line and
line-like graphs.

I We show that large network effects can break the
interdependence between agents.
I When an agent reaches the upper bound, he stops
transmitting influence across the network.



The model

I Each agent i chooses an action xi such that 0 ≤ xi ≤ L.
I The n agents are connected through a network G.

I The network may be weighted gij ≥ 0 and directed gij 6= gji
and has no self-loop gii = 0.

I Agents play a game with best reply given by:

fi (x−i ) = min(ai + δ ∑
j
gijxj , L)

I A Nash equilibrium x is a profile such that ∀i , xi = fi (x−i ).



The model

I For instance, game Γ with quadratic payoffs

ui (xi , x−i ) = −
1
2
x2i + aixi + δ ∑

j
gijxixj

I More generally, any game with payoffs:

πi (xi , x−i ) = vi (xi − ai − δ ∑
j
gijxj ) + wi (x−i )

where vi is increasing then decreasing and reaches its
maximum at 0.



What do we know?

I When there is no bound L = ∞, two cases.
I If δλmax(G) < 1, unique interior equilibrium where action is
related to Bonacich centrality

x = (I− δG)−11
x = 1+ δG1+ δ2G21+ δ3G31+ ...
x = 1+ δc

I If δλmax(G) ≥ 1, no equilibrium exists.
I Because δtGt does not converge to zero.



Supermodularity

I When actions are bounded, the strategy space [0, L]n is a
complete lattice.

I Because ∂2ui/∂xixj = δgij ≥ 0, the game with quadratic
payoffs Γ is supermodular.
I In particular, a Nash equilibrium always exists.
I Moreover, Γ always has a smallest and a largest Nash
equilibrium.

I Properties hold for any other game with the same best-replies.



Uniqueness

Theorem. When actions are bounded from above, there exists a
unique Nash equilibrium.



Uniqueness

I Sketch of the proof:
I Consider the smallest equilibrium x∗ and let I = {i : x∗i < L}.

I If I = ∅, the equilibrium is unique, so assume I 6= ∅.
I Agents not in I play L in all equilibria. Fix their play at L and
consider ϕ the restricted best-reply on [0, L]I .

I ∀i ∈ I , x∗i = ai + δ ∑j∈I gij x∗j + δ ∑j /∈I gijL.

I Introduce bi = ai + δ ∑j /∈I gijL. We have:

(I− δGI )x
∗
I = b.

I Since this system has a positive solution, δλmax(GI ) < 1.
I This implies that ϕ is contracting. For any equilibrium x,
xI = ϕ(xI ). So unique equilibrium. �



Key to the proof:

Show that the best-reply function is contracting on a
critical subset of the original strategy space;

namely, the set of actions lying between the smallest and
largest equilibrium.

Since any equilibrium belongs to that set, this property of
partial contraction is sufficient to guarantee uniqueness.

More generally, any supermodular game with such a par-
tially contracting best-reply has a unique equilibrium.



Therefore, uniqueness prevails even in the presence of
large positive network effects.

The structure imposed by linearity somehow disciplines
the natural tendency of strategic complementarities to
generate multiple equilibria.

The structure imposed by the strategic complementarities
somehow disciplines the tendency of linear network games
to yield multiple equilibria.

In short, linearity and complementarities discipline each
other.



BCZ Unique equilibrium

Bound on interaction parameter

BR 1

BR 2

No upper bound No equilibrium

BR 1

BR 1

BR 2

BR 2



BR functions
BBD Unique equilibrium

Bound on effort

BR 1

Multiple equilibria

with bounds on effort

BR 1

BR 

L L

BR 1(0) > 0

BR 2

BR 2

L

L

BR 2(0) < 0

BR 1(0) < 0

BR 1(0) > 0

BR 2(0) > 0



Comparative statics

Corollary. Individual action in the unique equilibrium x∗i is weakly
increasing in δ, L, a, and G.

I Proof: By Theorem 6 in Milgrom & Roberts (1990). �
I No need to use the implicit function theorem.
I Here, direct and indirect network effects are fully aligned.

I If one agent increases his action, his network neighbors may
only increase theirs.

I In turn, their neighbors may only increase theirs and the effect
propagates in the network.

I Very different from strategic substitutes, when direct and
indirect affects are generally not aligned.
I And comparative statics are much more complicated, see
Bramoullé, Kranton & D’amours (WP 2011).



Comparative statics

I In particular, every non-isolated agent eventually reaches L as
δ increases.
I Once he reaches the upper bound, he stays there.

Corollary. There are two threshold levels δ∗1 and δ∗2 such that
some, but not all, agents play the upper bound iff δ∗1 < δ ≤ δ∗2

I We see three domains emerging.
I δ∗1 = inf{δ : ∃i , [(I− δG)−11]i ≥ L}

δ∗2 = maxi [(L− ai )/(Lki )]



Thus, we see three domains emerging as a function of .

When   1, the equilibrium is interior and action is
proportional to Bonacich centrality in the network.

When 1 ≤   2, some agents have reached the upper
bound  but others have not.

When  ≥ 2, all agents have reached the upper bound
 and action does not depend on the network position.

These two thresholds depend on the upper bound  and
on the structure of the network.



How to compute the equilibrium?

I From the literature on supermodular games, we can adapt fast
algorithms to compute the equilibrium.
I In particular, repeated myopic best-replies converge
monotonically to the equilibrium starting from x = (0, 0, ...0)
or x = (L, L, ..., L).

I Faster if agents take turn in best-replying.



Network position and action

I We now study how network position is related to action.
I Assume in what follows that ∀i , ai = 1 and gij ∈ {0, 1}.
I Agents only differ in their network characteristics.
I Allows to clearly identify the effect of network position.

I We begin with an example showing that action and Bonacich
centrality may not be aligned.
I An agent who is more central may play a lower action.
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When is action aligned with centrality?

I Say that i’s neighborhood is nested in j’s neighborhood if any
neighbor of i is also a neighbor of j .

Proposition: If i’s neighborhood is nested in j’s neighborhood,
then x∗i ≤ x∗j
I In “nested split graphs”, agents reach the upper bound in the
order of their degrees.
I Include stars.
I Graphs that appear naturally in centrality-based network
formation processes, see König, Tessone & Zenou (WP 2009).



When is action aligned with centrality?

I Action and centrality can be aligned even if neighborhoods are
not nested.

I In particular, we can apply the analysis of Belhaj & Deroïan
(IJGT 2010).
I They study communication efforts under strategic
complements and indirect network interactions.

I Direct network interactions particular case.

I They focus on the line and “line-like”graphs with a clear
notion of geometric centrality.

I They show that more central agents play a higher action in the
lowest and highest equilibrium.

Corollary. On the line and on “line-like”graphs, agents who are
geometrically more central play a higher action.



404 M. Belhaj, F. Deroian

Fig. 6 A hierarchic community (x = 3, q = 4, p1 = p2 = p3 = 2, d1 = 2, d2 = d3 = 1, d4 = 0)

Indeed, in hierarchical communities, if agent i has a greater centrality index than agent
j , then for all integers k, the number of paths of length k from agent i to others is not
smaller than the number of paths of length k from agent j to others.

5 Conclusion

This article studied individual incentives to produce synergic efforts in the presence of
positive externalities characterized by spillovers spreading on a network. Our setting
entails multiple equilibria. We focused analysis on a class of networks with unam-
biguous ordinal ranking over centralities. We found that both (Pareto) dominant and
dominated equilibria are such that more central agents produce more efforts, but the
result does not always hold for other equilibria. Second, we addressed the issue of
social coordination.

Due to the level of generality of our assumptions regarding utility functions, our
analysis is restricted to specific network architectures. Future research shall explore
further the relationship between centrality indexes and efforts on more general network
architectures. Our study suggests that a good starting point may be to concentrate on
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When is action aligned with centrality?

Proposition: On regular graphs of degree k, every agent plays
x∗i = 1/(1− δk) if δ < (L− 1)/(kL) and x∗i = L otherwise.
I All agents play the same action, even under large network
effects.
I The level at which the upper bound is reached is independent
on the graph structure.



When is action aligned with centrality?

I Very different from strategic substitutes, see Bramoullé,
Kranton, D’amours (WP 2011).
I Agents play the same action only for small network effects.
I Under large network effects, only asymmetric equilibria are
stable even in fully symmetric graphs.

I The level at which the symmetric equilibrium ceases to be
stable depends on the graph’s structure (through its lowest
eigenvalue).



Broken interdependence

I We study the extent of interdependence under large network
effects.

I Under small network effects, interdependence is “maximal”. If
G is connected,

∀i , j , ∂x∗i
∂aj

> 0

I A shock on one agent affects the action of any other agent in
society.

I We show that large network effects can break this
interdependence.





δ< δ1 Full interdependence

+
+

+
++

+

+

+

δ1≤δ<δ2 Broken interdependence

+
+

+
L L



Broken interdependence

I More generally, define Pi = {j : ( ∂x ∗i
∂aj
)+ > 0} the set of agents

who indirectly affect i .
I A positive shock on j leads to an increase in i’s action.

Proposition. As δ increases, Pi shrinks monotonically towards ∅.
I Idea of the proof:

I j ∈ Pi ⇔ there is a path of agents playing an interior action
connecting i and j .



Broken interdependence

I Is interdependence broken quickly or not?
I Depends on bridges and bridging agents.
I In particular, if bridging agents also prominent within their
communities, interdependence broken quickly.

I But if bridging agents are relatively peripheral within,
interdependence may last longer.



Conclusion: future research?

I Uniqueness means that an empirical implementation of the
model should be relatively straightforward.

xi = ai + δ ∑
j
gijxj + εi

I With G and L known but δ to be estimated.
I Multiplicity is one of the key diffi culties in the econometrics of
games.

I Given assumptions on the error terms, in principle, we can
compute the likelihood L(x∗|δ,G , L).



Conclusion: future research?

I Uniqueness may be, in some sense, non-generic.
I We know that adding enough non-linearities or enough
substituabilities leads to multiple equilibria.

I Worse, the theory of supermodular games can only be applied
when all strategic interactions are complements.

I If for even one pair (i , j), we have ∂fi/∂xj < 0, not one of the
theorems holds.

I Is there any hope to develop a theory of “almost”
supermodular games?
I Are results robust to adding a little bit of non-linearities or
substituabilities? Or not?



GAMES ON NETWORKS

Take the network as given and study the impact of net-
work structure on outcomes.

GAMES WITH SUBSTITUABILITIES
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Introduction 
 
 
 
 
 

• We study the first model of strategic 
experimentation in social networks. 

 
• Individuals experiment to obtain new 

information and benefit from their 
neighbors’ experimentation. 

 
• Learning from others is a main source of 

learning in many situations: 
- Consumer choice. 
- R&D spillovers between firms. 
- Innovation adoption. 

 
• Extensive literature in sociology and in 

marketing. Recent studies in economics. 
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• For instance, consider the adoption of a new 
crop in rural areas of developing countries. 

 
• Conley & Udry (2003) 
 

- Look at the adoption of pineapple for export in Ghana. 
 
- Collected precise data on communication links. E.g. “Have 

you ever gone to X for advice about your farm?”.  
 
-  “Our findings suggest that a farmer increases his fertilizer use 

after someone with whom he shares information achieves 
higher than expected profits when using more fertilizer than 
he did.” 

 
- Evidence of social learning. Does not take place at the village 

level. Example of information network. 
 
• Foster & Rosenzweig (1995) 
 

- Look at the adoption of high-yield rice and wheat in India in 
the 1970’s. 

 
- “We find that farmers with experienced neighbors are 

significantly more profitable than those with inexperienced 
neighbors.” 

 



 
 4

- “farmers tend to free-ride on the learning of others” and 
“curtail their own costly experimentation” following an 
increase in the rate of adoption of their neighbors. 

 
- Evidence of social learning. Yields strategic experimentation. 

 
• We combine the two sets of findings. 
 
• We study how the shape of the 

communication network affects 
experimentation patterns and welfare. 

 
• We find strong network effects: 
 

- On the overall level of experimentation. May be lower in 
denser networks. 

 
- On individual experimentation. May be lower for 

individuals with a more central position in the network. 
 
- On the experimentation pattern. Networks lead to 

specialization and effort inequality. 
 
- On welfare. Inequal efforts may yield higher welfare 

when individuals who experiment are well-connected. 
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- New links increase access to information, but decrease 
incentives to experiment and may lower welfare. 

 
 
• Contribution of the paper: 
 

- Introduces network aspects to the literature on strategic 
experimentation, Bolton & Harris (1999). 

 
- Endogenizes the generation of information in models of 

learning in networks, Bala & Goyal (1998). 
 
- Advances the economic theory of networks. 

 
- Studies the first model where a good is non-excludable 

among linked individuals. 
 

- Develops a new research strategy: Builds families of 
graphs to model different social structures. 
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Model 
 
 
• Simple model. 
 
•  n individuals, Set of agents },...,1{ nN = . 
 
• Social network g, where gij = 1 indicates i 

and j are social neighbors. 
 
• }1:{ =−∈= iji giNjN  Set of agents that are 

directly linked to agent i and ii Nk =  
number of i’s neighbors 

 
• Individuals can experiment to acquire 

information. 
 
• Experimentation profile e = (e1,…,en). E.g. 

amount of land planted with a new crop. 
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• Individuals benefits from the 
experimentation results of their neighbors. 

 

     ⎟
⎠
⎞

⎜
⎝
⎛ ∑+

∈ iNj
ji eeb  

 
 where b(.) is increasing and concave. 
 

• i.e., information diffuses one step, no decay.  
 
• Constant marginal cost of experimentation c. 
 
• Given g, individuals simultaneously choose 

their experimentation level ei. 
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• Payoff for individual i: 
 

iU (e; g) iiNj ji eceeb
i

−⎟
⎠
⎞⎜

⎝
⎛ += ∑

∈
 

 
  Observe that: 
 

0''
2

2

2

<⎟
⎠
⎞

⎜
⎝
⎛ ∑+=

∂∂
∂

=
∂
∂

∈ iNj
ji

ji

i

i

i eeb
ee

U
e
U  

 
Thus ie  and je  (local) strategic substitutes  

when 1=ijg  
 
 
 
 
 
 
 
 



 
 9

 
• This defines a static game parametrized by 

the social network. 
 
• How do the equilibria depend on the 

network? 
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Nash Equilibria 
 
 
• Let e* be such that b′(e*) = c.  
i.e. 

)(' 1* cbe −=  
 
Experimentation for an isolated individual.   
 
• Let ∑=

∈ iNj
ji ee  denote the information 

individual i receives from her neighbors, i.e. 
the total effort of i’s neighbors. 
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Proposition: A profile e is a Nash equilibrium 
if and only if for every agent i either: 
 
(1) *eei ≥  and 0=ie  
or 
(2) *eei ≤  and ii eee −= *  
 

Proof. FOC:     0' =−⎟
⎠
⎞

⎜
⎝
⎛ ∑+=

∂
∂

∈
ceeb

e
U

iNj
ji

i

i  

This is equivalent to: 
*1 )(' ecbee

iNj
ji ==∑+ −

∈
 

 
∑−=⇔
∈ iNj

ji eee *  

Therefore: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

∑ >−

∑≤

=

∈

∈

i

i

Nj
j

Nj
j

i

otherwiseee

eeif

e
0

0

*
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• Abstract characterization is easy. Geometric 

characterization is difficult. 
 
• Experimentation levels are strategic 

substitutes. 
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• Distinguish three types of equilibria: 

 
A profile e is specialized when: 
Individuals exert 0=ie  or *eei =    
The agent *eei =  is a specialist. 

 
A profile e is distributed when all individuals 
experiment, i.e. every agent exerts some positive 
effort, Nieei ∈∀<< ,0 *  
 
Hybrid equilibria fall between these two extremes 
 

 
• Benefits for individuals who do not 

experiment may be greater than b(e*). 
 
 
• Indicates potential gains from specialization. 
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Illustration on Simple Graphs 
 
e* = 1 
 
•  Complete graph (Nash equilibria)   
 
 
 
 
 

• Symmetric, densely connected society. 
• Information is public. 
• Overall equilibrium experimentation (aggregate effort) is 

e*, distributed in any way. 
 
 
 
 
 
 
 
 
 
 

 

1/4 1/4

1/4 1/4

10

0 0
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• Star   
 
 
 
 

• Asymmetric network.  
• All equilibria are specialized: (1) the center experiments, 

or (2) all agents in the periphery experiment. 
• In the right equilibrium, the center earns b(3e*). 

 
• Circle 
 
 
 
 
 

• Symmetric, not densely connected society. 
• Both distributed and specialized equilibria. 
• In the right equilibrium, individuals who do not search 

earn b(2e*). 
 
 
 

1 
0

0 

0 
1

0

1

1

1

1

0

0

1/3 

1/3

1/3

1/3 
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• What do we learn from these simple graphs? 

 
- The network is a main determinant of the equilibria. 
 
- The overall level of experimentation is usually 

indeterminate on incomplete networks. 
 
- Denser networks can lead to less overall 

experimentation. 
 
- Effort sharing is not always possible. 

 
• In general networks, existence of equilibria 

guaranteed by standard arguments. 
 
• However, this says nothing on their shape. 
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    Definition: An independent set I of a network g is a 
set of players such that no two players who belong 
to I are linked, that is Iji ∈∀ ,  such that 

0, =≠ ijgji . An independent set is maximal 
when it is not a proper subset of any other 
independent set. 

 
      Any maximal independent set has the property that 

every player either belongs to it or is connected to a 
player that belongs to it. 

 
      For any player i, there exists a maximal independent 

set I of the network g such that i belongs to I. This 
implies that any network g possesses at least one 
maximal independent set. 
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      Given a graph g, we can define a maximal 
independent set of order r such that any individual 
not in I is connected to at least r individuals in I. 
That is, for a maximal independent set of order r, 
agents outside the set can have more than r, but no 
less than r, connections to agents in the set. 

 
      
      The case r = 1 simply corresponds to maximal 

independent sets. While every graph contains 
maximal independent sets, not all graphs contain 
maximal independent sets of higher order. 
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    Consider first this Figure: complete graph with n=4 
 

 
 
 
 
 
 

      An independent set can include at most one 
player. There are thus four maximal independent 
sets, each including one player.  

 
      There is no maximal independent set of order r =2 

or higher. This is a general property of complete 
graphs. 

 
 
 
 
 
 
 
 
 

1/4 1/4

1/4 1/4

10

0 0
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     Consider now this Figure: a star network with n=3.  
 

 
 
 
 

     There are two maximal independent sets: the one 
that only includes the central player and the one 
that includes both peripheral players.  

      Observe that each peripheral player constitutes an 
independent set but it is not maximal. 

 
      There is however only one maximal independent 

set of order r = 3 composed by all peripheral 
players. 

 
      This is a general result of star-shaped graphs. If 

there are n players, then there is only one maximal 
independent set of order r = n – 1 composed of all 
peripheral players together. 

 
 
 
 

1 
0

0 

0 
1

0

1

1
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     Consider this Figure: a circle with n=4. 
 
 

 
 
 
 
 

      There are two maximal independent sets, each 
containing each player on opposite sides of the 
circle.  

     
These two maximal independent sets are of order  
r = 2.  
 
 
 
 
 
 
 
 
 
 

1

1

0

0

1/3 

1/3

1/3
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      Go back to the model. 
 
      Because effort are strategic substitutes, maximal 

independent sets are a natural notion in this model. 
Indeed, in equilibrium, no two specialists can be 
linked. Hence, specialized equilibria are  

     characterized by this structural property of a graph. 
 

Specialists = maximal independent set of the graph. 
 
Theorem 1: A specialized profile is a Nash 
equilibrium if and only if its set of specialists is 
a maximal independent set of the structure g. 
Since for every g there exists a maximal 
independent set, there always exists a 
specialized Nash equilibrium. 
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Proof:  
 
Consider a specialized equilibrium where I is the set 
of specialists. Specialists play a best response if all 
their neighbors exert zero effort. This means that I is 
an independent set of the graph. A non specialist i 
plays a best response if 

*ee
iNj

j ≥∑
∈

 

 
1≥⇔ INi I  

 
rINi ≥⇔ I  

 
This means that all players not in I are connected to at 
least r players in I. Combining both properties yields 
the result. Q.E.D.  
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Heuristic proof 
 
- Take one agent i. Let her play e*. Let all her 

neighbors play 0. Remove i and her neighbors. 
 

- From remaining agents, take another agent j. Repeat 
the operation with j. 

 
- Continue until all agents are covered. 

 
- In the end, (1) no two specialists are linked, and (2) 

every non-specialist is connected to a specialist. 
 
Q.E.D 
 
 
 
• Specialized equilibria characterized by 

simple structural property of the graph. 
 
 
 
 



 
 25

Equilibrium selection: stable Nash equilibria 
 
• Consider a simple notion of stability based 

on Nash tâtonnement. 
 
See Fudenberg and Tirole (1991), Game 
Theory. 
 
Definition: Define )(eif  as the best response of 
individual i to a profile ( )nee ,...,1=e  and define 
f as the collection of these individual best 
responses ( ))(),...,(1 eef nff= . Then, an 
equilibrium ( )nee ,...,1=e  is stable if and only if 
there exists a positive number ρ > 0 such that, 
for any vector ( )nεε ,...,1=ε  satisfying i∀ , ρε ≤i  
and 0≥+ iie ε , the sequence )(ne , defined by 

( )nnee εε ++=+= ,...,11
(0) εee  and 

( ))(1)( nn efe =+ , converges to ( )nee ,...,1=e . 
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This (standard) notion leads to a strong result: 
• Only specialized equilibria are stable. 
 
This result rests on the strategic substitutability 
of efforts of linked players. 
 
Consider an equilibrium where everyone exerts 
some effort, and decrease the effort of an 
individual i by a small amount. Her neighbor(s) 
will adjust by increasing their own efforts. This 
increase can lead i to reduce his effort even more. 
In this case, the initial equilibrium is not stable.  
 
This process does not work in specialized 
equilibria when every agent j who exerts no effort 
is linked to two specialists. If  we reduce the 
effort of these specialists, agent j will not adjust. 
He has access to two sources of information, and 
a small reduction will not lead him to increase his 
own effort. 
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Stable profiles thus correspond to maximal 
independent sets of order 2. Given a graph g, 
we 
show a stable equilibria exists if and only if 
there is a maximal independent set of order 2. 
 
Theorem 2: For any social structure g, an 
equilibrium is stable if and only if it is specialized 
and every non-specialist is connected to (at least) 
two specialists. Hence, there exists a stable 
equilibrium in a graph g if and only if it has a 
maximal independent set of order 2. 
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Thus an equilibrium is stable iff it is specialized 
and non-specialists are linked with at least two 
specialists. 
 

  Consider now the star network with n=3.  
 

 
 
 
 

     In both graphs, there is only one maximal 
independent set of order r = 2 composed by 
all peripheral players. 

 
   Consider the Nash equilibrium where the center 
   exerts 1* =e  and peripheral agents exert no     
   effort (graph on the left).  
   The set of specialists is not a maximal      
    independent set of order 2. Thus this  
    equilibrium is not stable. 

1 
0

0 

0 
1

0

1

1
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      In contrast, consider the equilibrium 
      where all peripheral agents exert effort (graph 
      on the right). This equilibrium is stable, as the 
      set of specialists is a maximal independent set 
      of order 2. 
 
• E.g., on the star, experimentation by the 

center is not stable. 
 → Better connected agents do less. 
 
• Inequality in experimentation is a natural 

outcome of the network structure. 
 



 
 30

 
Models of Social Networks 
 
• In the paper, we build families of graphs 

representing different social structures. 
 
• Overlapping Neighborhoods: symmetric 

structure where agents learn from those 
close in geographic or social space. Explore 
increasing levels of network density.  
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• Communities/Bridges: asymmetric structure 
with agents divided into disjoint 
communities. Explore increasing numbers of 
links – bridges – between communities.   

 

 
 
• Core-Periphery: asymmetric, hierarchical 

structure where agents in periphery rely on 
core. Explore increasing density of links 
between core and periphery.  
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Welfare Analysis  
 
 
• What are the welfare properties of the 

different equilibrium profiles?  
 
• We adopt a simple utilitarian approach  
    W(e,g)=Σi Ui(e,g) 
 
• Because of information externalities, no 

equilibrium yields first-best level of welfare. 
 
• We study which Nash equilibria yield 

highest welfare. 
  → Second-best profiles. 
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• Second term is information premium from 

specialization.  
 

Compare with Nash equilibrium 
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• A trade-off emerges : 
 
* distributed equilibria have lower search costs. 
 
* specialized equilibria can have  information 
premia. 
 
Overall experimentation is greater in 
specialized equilibria. 



 
 34

E.g. Circle 
 
 
 
 
 
 

• Welfare of distributed equilibria 
 
   4 b (e*) – (4/3) ce* 
 
 
• Welfare of specialized equilibria 
 
   4 b (e*) + 2 [b(2e*) – b(e*)] - 2 ce* 
 
 
• Specialized equilibria are second-best when 

information premium exceeds additional search costs 
 
    [b(2e*) - b(e*)] > (1/3) ce* 

 
 
 

1

1

0

0
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1/
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Proposition: Specialized equilibria yield 
greater welfare if: (1) more information is 
sufficiently valuable, and (2) specialists are 
sufficiently well-connected. 
 

∑i specialist ki  >  n  –  1 
 
 where ki is the number of neighbors of i. 
____________________________________ 

 
E.g. In circle, specialists together have 4 neighbors,  
     and n  –  1 =  3 
 
 

 
 
 
___________________________________________________ 
 
 
• Similar method to compare specialized 

equilibria - count number of links between 
specialists and non-specialists. 

1

1

0

0
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What is the effect of adding a link? 
 
• Consider a graph G and agents i and j not 

linked in G. 
 
• We say a link between i and j leads to a 

welfare loss when second-best welfare level 
for G +ij is lower than that for G. 

 
• Consider a second-best profile for G: 
 
• Benefit of New Link: If i or j does not 

experiment, equilibrium is preserved. Link 
adds new source of information. 

 
• Cost of New Link: If both i and j experiment, 

equilibrium is not preserved. Link is new 
source of information but leads to a loss of 
experimentation. 
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Proposition: A necessary condition for a loss in 
welfare is both agents experiment in all second-
best profiles for G. 
 
• Illustration: Two Stars 
 
 
 
 

 
• Experimentation by center individuals is unique second-

best profile.  
 
 
 
 
 
 

 
• Linking center to periphery increases welfare. 
 
• Linking two centers can decrease welfare.  
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Bridges between Communities 
 
• Divide population into two communities, in 

which all agents are linked to each other.  
 
• Some - but not all - agents are linked to 

agents in other community: bridges and 
bridge agents 

 
• Members of this family of graphs described 

by β – the number of bridges. 
 
 
 
 
 
 
 
 
• Represents isolated villages, research units 

within firms....  
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Results:  
 

• In equilibrium, in each community, overall 
experimentation is e*.  

 
• For any two bridge agents, one does no 

experiment. 
 
• Hence, across equilibria, average cost of non-

bridge agents increases in β. 
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• Result counters conventional sociological 

wisdom about bridges – bridges help 
community by transmitting information. 

 
• Here, bridge agents take advantage of other 

sources of information to reduce their effort.  
 
• This reduction harms others in their 

community.  
 
• This also illustrates our messages. 
 

→ Better connected individuals experiment 
less, on average. 

 
→ Equilibrium profiles become more 
inequal, on average, as β increases. 
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• Yet, on aggregate, welfare increases in the 

number of separate bridges – bridges that 
uniquely link agents across communities. 

 
• Information premium for bridge agents who 

do not experiment. 
 
• In second-best profiles, effort is 

concentrated on bridge agents. 
 
 
 
 
 
 
 
→ Welfare is higher when experimentation is 

done by well-connected agents. 
 
 

0 0

0 1

1 0

0 0
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Negative Effect of New Non-Separate Bridge 
 
• While separate bridges increase welfare, 

non-separate bridges can reduce welfare. 
 
• Consider a structure where some agents 

already have links to the other community. 
 
• In second-best profile, these agents 

experiment. 
 
• Adding a link between them reduces their 

incentive to search and can lower welfare.  
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