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Linear-in-means model

Agents interact in groups, i.e., the social network is partitioned in groups

and individuals are affected by all others in their group but by none

outside of it.

Assessing social interaction effects: the standard framework

The basic linear-in-means model can be written as:

 = +  E() +  E() +  +  (1)

 is the outcome (education, crime, etc.) of individual  belonging to

group ,



 is the set of covariates of individual ’s (i.e. ’s characteristics) in

group ,

E() denotes the average of outcomes in the peer group  of individual
,

E() denotes the average of the characteristics (or characteristics spe-
cific to group ) in the peer group  of individual .

  0 ⇒ endogenous peer effects,   0 ⇒ exogenous contextual

effects.



Example: Education, Peer group: Classroom (or school)

 = +  E() +  E() +  + 

 is the grade of individual  belonging to class ,

 is the set of individual ’s characteristics (parents’ education, race,

gender, etc.) in class ,

E() denotes the average of grades of all students belonging to class
,

E() denotes the average of the characteristics of all students belonging
to class .



  0 ⇒ endogenous effect (effect of grades’ students in the same

class),   0⇒ exogenous (contextual) effects (effect of parents’ friends

education or teacher quality).



Example: Crime, Peer group: Neighborhood

 = +  E() +  E() +  + 

 is the crime effort (how often he/she is committing crime) of indi-

vidual  belonging to neighborhood ,

 is the set of individual ’s characteristics (parents’ education, race,

gender, etc.) living in neighborhood ,

E() denotes the crime rate average of individuals living in neighbor-
hood ,

E() denotes the average of the characteristics of all individuals living
in neighborhood .



  0⇒ endogenous effect (influence of criminal neighbors),   0 ⇒
exogenous effects (influence of neighborhood characteristics or friends’

characteristics).



What is the reflection problem?

 = +  E() +  E() +  + 

Assume E(| ) = 0 and take the average over peer group :

E() = +  E() +  E() +  E()



Solve this equation:

E() =


1− 
+

Ã
 + 

1− 

!
E()

Plugging this value in the initial equation:  = + E()+ E()+
 + , we obtain:

 =


1− 
+

"
 + 

1− 

#
E() +  + 

If one estimates this equation, there is an identification problem since

 (endogenous peer effects) and  (exogenous or contextual effects)

cannot be separated identified.

3 estimated coefficients, 4 structural parameters: identification fails



This is the reflection problem (Manski, 1993).



Manski (1993, 2000) and Moffitt (2001): it is important to separately

identify peer or endogenous effects from contextual or exogenous effects

(policy implications).

Endogenous effects: when the propensity of an individual to behave in

some way varies with the behavior of the reference group.

Contextual effects: when the propensity of an individual to behave

in some way varies with the exogenous characteristics of the reference

group.

Correlated effects: when individuals in the same group tend to behave

similarly because they have similar individual characteristics or face sim-

ilar institutional environments.



Social networks can solve the reflection problem: Some intuition

So far the reference group was the same for all individuals.

Peer effects: an average intra-group externality that affects identically

all the members of a given group.

Group boundaries: arbitrary and at a quite aggregate level

Peer effects in crime: neighborhood level using local crime rates

Peer effects in school: classroom or school level using average school

achievements

Social networks: smallest unit of analysis for cross influences: the dyad

(two-person group)



Reference group of individual  is his/her best friends.

Reference group of individual , who is a best friend of , is not the

same as  because individual  may have some best friends that are not

’s best friends.



A simple example

Consider a network of students in infinite number arrayed on a line with

each student being influenced only by his left-hand friend in his/her

choice of (educational) activities.

G =

(
1  = − 1
0  6= − 1

Structural model:

 = +  −1 + −1 +  +  + 

E( | −∞  +∞) = 0



Using the panel data model terminology, lags of  may be used as

instruments for −1.

This captures the intuition that the characteristics of the friends’ friends

of a student who are not his friends may serve as instruments for the

actions of his own friends.

This example illustrates the case of a network in which we can find

intransitive triads.

These are sets of three students , ,  such that  is affected by  and

 is affected by  (that is, a triad), but  is not affected by .

Here, , ,  forms an intransitive triad for any  when  =  − 1 and
 = − 2, since i is not directly affected by − 2.



We will show below that the presence of intransitive triads is a sufficient

(but not necessary) condition for the identification of social effects in

the absence of correlated effects.



Now consider the case where there may be network fixed effects po-

tentially correlated with the family background of students.

Assuming that the ’s are strictly exogenous conditional on , and

maintaining our other assumptions, we have

 = +  −1 +  −1 +  +  + 

E( | −∞  +∞ ) = 0

Define

∆ =  − −1 for  =   



Differencing this equation gives

 − −1 = − +  −1 −  −1 +  −1 −  −2
+ − −1 +  −  +  − −1

∆ = ∆ + ∆−1 + ∆ +∆

and

E(∆ | ∆−∞ ∆+∞) = 0

Therefore, lags (∆−∞ ∆+∞) can be used as valid identifying

instruments.



Go back to the general model with network effects

Equation is now:

 = +  E() +  E() +  + 

where  is now the group of best friends of individual  and thus

E() =
1



X
=1

 

 is the number of friends of ,

 =
P
=1  is the total number of friends of ,

 = 1 means that individuals  and  are best friends.

We have  = 1 implies that  = 1 (undirected network).



Write the same equation for individual  for whom  = 1 we have

 = +  E() +  E() +  + 

where

E() =
1



X
=1

 

with

E() 6= E()



Consider our model in matrix form:

Y = 1+ G∗Y + X + G∗X + 

̄ : total number of networks in the sample, : number of individuals

in the th network

 =
P̄
=1  total number of sample observations.

Y is a ×1 vector of observations on the dependent (decision) variable,

G is the ×  adjacency matrix in network ,

X is a × 1 vector of observations on the exogenous variables,



G∗ is the ×  row normalized matrix of G.

’s are i.i.d. innovations with zero mean and variance 
2 for all  and

.

Assume  [²|GX] = 0.

Similar to that of a spatial autoregressive (SAR) model



This model is identified if and only if  (G∗Y | X) is not perfectly

collinear with the regressors (X, G∗X) so that instruments can be

found for the endogenous vector GY.

Bramoulle et al (J of Econometrics 2009): This condition is equivalent

to I, G and G2 are linearly independent. Only for row-normalized

matrix of peer effects, i.e. G = G∗ so that G∗Y.

This is true as long as the networks are partially overlapping: some

individuals may not be friends with his/her friends’ friends ( is friend

to  and  is friend to  but  is not friend with ).



For individual , the characteristics of peers of peers G2X (i.e. ) is

a valid instrument for peers’ behavior G2Y (i.e. ) since  affects

 only indirectly through its effect on  (distance 2)

i kj

YjYi Xk

The natural exclusion restrictions induced by the network structure (ex-

istence of an intransitive triad) guarantee identification of the model.



Model

Structural model in matrix notation:

y = αι+ βGy+ γx+ δGx+ ε (2)

y is an n� 1 vector of recreational activities for the l network
(l = 1, ..., L and stands for the �xed network index)
G is an n� n interaction matrix, with Gij capturing the strength of
interaction between i and j
ι is an n� 1 vector of ones
assume: E [ι
 x] has full rank
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Reduced form and identi�cation

(2) can be re-written as

y = α(I� βG)�1ι+ (I� βG)�1(γI+ δG)x+ (I� βG)�1ε (3)

because jβj < 1, hence I� βG is invertible.

Individual i is said to be isolated if his friends�group is empty. Then,
the intercept is α, otherwise α

1�β .

Social e¤ects can be identi�ed if and only if θ can be uniquely
recovered from the unrestricted reduced-form parameters in (3)
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Reduced form and identi�cation

Since (I� βG)�1 = ∑∞
k=0 βkGk and assuming no isolated students

(3) can be expanded as

y =
α

1� β
ι+ γx+ (γβ+ δ)

∞

∑
k=0

βkGk+1x+
∞

∑
k=0

βkGk ε (4)
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Results

Theorem 1
Suppose that (γβ+ δ) 6= 0. If the matrices I,G and G2 are linearly
independent social e¤ects are identi�ed. If the matrices I,G and G2 are
linearly dependent and no individual is isolated, social e¤ects are not
identi�ed.a

aProof provided in the report

Condition (γβ+ δ) 6= 0 directly refers to (4), i.e. student�s expected
recreational activities depend upon the family background of his
friends. This negated equality holds for β > 0, γ 6= 0, and when γ
and δ have the same sign

When (γβ+ δ) = 0, then endogenous and exogenous e¤ects are zero
or cancel each other out. Thus, social e¤ects are unidenti�ed.

(University of Southampton) February 15, 2013 13 / 25



Implications of Theorem 1

In Manski (1993) G2 = G resulting in perfect collinearity between the
expected mean recreational activities of the friends�groups and the
mean family background of the group. Hence, second part of
Theorem 1 holds.

In Mo¢ tt (2001) G2 = 1
s�1 I+

s�2
s�1G for group size s � 2. G2 is

linearly dependent on I and G, which satis�es the second part of
Theorem 1.

In Lee (2007) groups have di¤erent sizes (s1 6= s2), hence I, G and
G2 are linearly independent- social e¤ects are identi�ed.

(University of Southampton) February 15, 2013 14 / 25



Results cont.

Theorem 2
Suppose that individuals interact in groups. If all groups have the same
size, social e¤ects are not identi�ed. If (at least) two groups have di¤erent
sizes, and if (γβ+ δ) 6= 0, social e¤ects are identi�ed.

Variations in group sizes create exogenous variations in the reduced
form coe¢ cients (3), which leads to identi�cation of social e¤ects

(University of Southampton) February 15, 2013 15 / 25



Results with network interactions

In networks with intransitive triads (a friend of a friend of mine is not
my friend), social e¤ects can be identi�ed (I, G and G2 are linearly
independent)

In transitive networks (a friend of a friend of mine is my friend)
identi�cation generally holds and relies on the nature of the links
(G2 6= 0)

Theorem 3
Suppose that individuals do not interact in groups. Suppose that
(γβ+ δ) 6= 0. If G2 6= 0, social e¤ects are identi�ed. If G2 = 0, social
e¤ects are identi�ed when α 6= 0, but not when α = 0.

(University of Southampton) February 15, 2013 16 / 25



Correlated effects/selection

Manski (1993): Can we disentangle “endogenous effects” from “corre-

lated effects”, i.e. those due to the fact that individuals in the same

group tend to behave similarly because they face a common environ-

ment?

The formation of peer group is not random and individuals do select

into groups of friends.

It is therefore important to separate the endogenous peer effects from

the correlated effects (Manski, 1993), i.e. the same criminal activities

may be due to common unobservable variables (such as, for example,

the fact that individuals from the same network like bowling together)

faced by individuals belonging to the same network rather than peer

effects.



This is also very important for crime policies since, for example, if the

high-crime rates are due to the fact that teenagers like to bowling to-

gether, then obviously the implications are very different than if it is due

to peer effects.

Correlated effects might originate from the possible sorting of agents

into “groups”

If the variables that drive this process of selection are not fully observ-

able, potential correlations between (unobserved) group-specific factors

and the target regressors are major sources of bias.



Selection on unobservables

Assume agents self-select into different networks in a first step, and that

link formation takes place within groups in a second step.

Bramoullé et al. (2009): if link formation is uncorrelated with the

observable variables, this two-step model of link formation generates

network fixed effects.

Assuming additively separable network heterogeneity, a within group

specification is able to control for selection issues

Bramoullé et al. (2009): by subtracting from the individual-level vari-

ables the network average, social effects are again identified and one

can disentangle endogenous effects from correlated effects



Consider our model with network fixed effects:

Y = 1+ G∗Y + X + G∗X + 1 + 

We can eliminate the network fixed effect by the network-mean trans-

formation (global differences), that is by multiplying this equation by

the matrix: J = I − 1

11T (I identity matrix, 1 vector of 1).

J = I −
1


11

T
 =

⎛⎜⎜⎜⎜⎜⎝
1− 1


− 1


 − 1


   

− 1


 1− 1


− 1


− 1


  1− 1


⎞⎟⎟⎟⎟⎟⎠
with J1 = 0.



Observe that global differences: eliminate the network fixed effect by

the network-mean transformation, that is by multiplying this equation

by the matrix: J = I − 1

11T (I identity matrix, 1 vector of 1).

Average

Y = 1+ G∗Y + X + G∗X + 1 + 

over all students in ’s network, and subtract from ’s equation.

The equation being subtracted is identical for all students in the same

network



Model becomes:

JY = JG
∗
Y + JX + JG

∗
X + J



Model can be written as:

dY = G∗cY + cX + G∗cX + b
where dY = JY, cX = JX, b = J.
The model can be identified if and only if E

³
G∗cY | cX

´
is not perfectly

collinear with the regressors
³cX, G∗cX

´
.

This condition is equivalent to I, G, G2 and G
3
 are linearly inde-

pendent.

The condition is more demanding because some information has been

used to deal with the fixed effects.



Bramoulle et al (2009) show that if two agents  and  in a network are

separated by a link of distance 3, then I, G, G2 and G
3
 are linearly

independent. Model is identified.

Consider four individuals: , , , but  is not friend with .

 can serve as an instrument for  in individual ’s equation since

 affects  but only indirectly through its effect on .

lkji

XlYkYjYi



Example with star-shaped network with  = 3 and 1 in the center

Consider our model with network fixed effects:

Y = 1+ G∗Y + X + G∗X + 1 + 

 = + 

X
∈



 
+  + 

X
∈




+  + 



G =

⎛⎜⎝ 0 1 1
1 0 0
1 0 0

⎞⎟⎠ , G∗ =
⎛⎜⎝ 0 12 12
1 0 0
1 0 0

⎞⎟⎠

I3 =

⎛⎜⎝ 1 0 0
0 1 0
0 0 1

⎞⎟⎠ , 1 =
⎛⎜⎝ 1
1
1

⎞⎟⎠ , 1T = ³
1 1 1

´



Initial model

Y = 1+ G∗Y + X + G∗X + 1 + 

⎛⎜⎝ 1
2
3

⎞⎟⎠ =

⎛⎜⎝ 



⎞⎟⎠+ 

⎛⎜⎝ 2 + 3
1
1

⎞⎟⎠+ 

⎛⎜⎝ 1
2
3

⎞⎟⎠
+

⎛⎜⎝ 05 (2 + 3)
1
1

⎞⎟⎠+
⎛⎜⎝ 




⎞⎟⎠+
⎛⎜⎝ 1
2
3

⎞⎟⎠



Local differences

We average

 = + 

X
∈



 
+  + 

X
∈




+  + 

over all student ’s friends, and subtract it from ’s equation.

This approach is local since it does not fully exploit the fact that the

fixed effect is not only the same for all ’s friends but also for all students

of his network.



Y = 1+ G∗Y + X + G∗X + 1 + 

We obtain:

(I −G∗)Y =  (I −G∗)G∗Y +  (I −G∗)X

+ (I −G∗)G∗X + (I −G∗) 

Note (I −G∗)1 = 0



(I3 −G∗) =

⎛⎜⎝ 1 0 0
0 1 0
0 0 1

⎞⎟⎠−
⎛⎜⎝ 0 12 12
1 0 0
1 0 0

⎞⎟⎠
=

⎛⎜⎝ 10 −05 −05
−10 10 0
−10 0 10

⎞⎟⎠
and

(I3 −G∗)G∗ =

⎛⎜⎝ −1 05 05
1 −05 −05
1 −05 −05

⎞⎟⎠



Thus, transformed model

⎛⎜⎝ 1 − 052 − 053
2 − 1
3 − 1

⎞⎟⎠ = 

⎛⎜⎝ −1 + 052 + 0531 − 052 − 053
1 − 052 − 053

⎞⎟⎠

+

⎛⎜⎝ 1 − 052 − 053
2 − 1
3 − 1

⎞⎟⎠+ 

⎛⎜⎝ −1 + 052 + 0531 − 052 − 053
1 − 052 − 053

⎞⎟⎠

+

⎛⎜⎝ 1 − 052 − 053
2 − 1
3 − 1

⎞⎟⎠



Global differences

We can eliminate the network fixed effect by the network-mean transfor-

mation, that is by multiplying this equation by the matrix: J = I−H

(where H =
1

11T ).

J = I3 −
1

3
11

T
 =

⎛⎜⎝ 1 0 0
0 1 0
0 0 1

⎞⎟⎠− 1
3

⎛⎜⎝ 1 1 1
1 1 1
1 1 1

⎞⎟⎠
=

⎛⎜⎝ 23 −13 −13
−13 23 −13
−13 −13 23

⎞⎟⎠
and

J1 =

⎛⎜⎝ 23 −13 −13
−13 23 −13
−13 −13 23

⎞⎟⎠
⎛⎜⎝ 1
1
1

⎞⎟⎠ =
⎛⎜⎝ 0
0
0

⎞⎟⎠



We obtain:

JY = JGY + JX + JG
∗
X + J

In contrast to the local difference approach, the equation being sub-

tracted is now identical for all students in the same network.



⎛⎜⎜⎝
2
31 −

1
32 −

1
33

−131 +
2
32 −

1
33

−131 −
1
32 +

2
33

⎞⎟⎟⎠ = 

⎛⎜⎜⎝
2
3 (−1 + 2 + 3)
1
3 (1 − 2 − 3)
1
3 (1 − 2 − 3)

⎞⎟⎟⎠

+

⎛⎜⎜⎝
2
31 −

1
32 −

1
33

−131 +
2
32 −

1
33

−131 −
1
32 +

2
33

⎞⎟⎟⎠

+

⎛⎜⎜⎝
1
32 −

2
31 +

1
33

1
31 −

1
62 −

1
63

1
31 −

1
62 −

1
63

⎞⎟⎟⎠

+

⎛⎜⎜⎝
2
31 −

1
32 −

1
33

−131 +
2
32 −

1
33

−131 −
1
32 +

2
33

⎞⎟⎟⎠



Correlated E¤ects- Model

Identi�cation problem: correlation between family background of
students and unobserved variables common to students within
particular network

For any network l and any student i belonging to l

yli = αl + β
∑j2Pi ylj
ni

+ γxli + δ
∑j2Pi xlj
ni

+ εli (5)

αl captures unobserved variables that have universal impact on all
individuals within the network (network �xed e¤ect)
E [εli jxl , αl ] = 0- strict exogeneity of xl conditional on αl

(University of Southampton) February 15, 2013 17 / 25



Correlated E¤ects- Model

Remedy: elimination of network speci�c unobservables by di¤erencing
structural equations:

Local di¤erences

Average eq. (5) over all
student i�s friends and subract
it from eq. (5)

Global di¤erences

Average eq. (5) over all
students in i�s network and
subract it from eq. (5)

Within local transformation model

(I�G)yl = β(I�G)Gyl + γ(I�G)xl + δ(I�G)Gxl + (I�G)εl
(6)

Within global transformation model

(I�H)yl = β(I�H)Gyl + γ(I�H)xl + δ(I�H)Gxl + (I�H)εl
(7)

(University of Southampton) February 15, 2013 18 / 25



Results (local transformation)

Theorem 4
Consider model (6). Suppose that (γβ+ δ) 6= 0. Social e¤ects are
identi�ed if and only if the matrices I, G, G2 and G3 are linearly
independent.

Note: in the presence of correlated e¤ects, identi�cation condition is
stronger than in previous theorems

Corollary 5

Consider model (6) and suppose that (γβ+ δ) 6= 0. If the diameter of the
network is greater than or equal to 3, social e¤ects are identi�ed.

Note: diameter is the maximal friendship distance between any two
students in the network

(University of Southampton) February 15, 2013 19 / 25



Results (global transformation)

Theorem 6
Consider model (7). Suppose that (γβ+ δ) 6= 0. If the matrices I, G, G2
and G3 are linearly independent, social e¤ects are identi�ed. Next,
suppose that G3 = λ0I+ λ1G+ λ2G2. If rank(I�G) < n� 1 and
2λ0 + λ1 + 1 6= 0, social e¤ects are identi�ed. In contrast, if
rank(I�G) = n� 1, social e¤ects are not identi�ed.

Note: if social e¤ects are identi�ed when using local transformation, they
are also identi�ed when taking global di¤erences. If social e¤ects are not
identi�ed when using global transformation, they are never identi�ed.

(University of Southampton) February 15, 2013 20 / 25



Lack of identi�cation: examples

In �gures 1-3, the matrices I, G, G2 and G3 are linearly dependent,
hence social e¤ects are not identi�ed

Figure 4 is an example of the network, for which identi�cation holds
under global, but not local, di¤erences.

(University of Southampton) February 15, 2013 21 / 25



Estimation

US in-school Add Health data (September 1994 - April 1995), sample
of 80 high schools and 52 middle schools, 55208 observations

Correlated e¤ects eliminated by appropriate local transformation:

(I�G)y = β(I�G)Gy+ γ(I�G)X+ δ(I�G)GX+ v (8)

Generalized 2SLS procedure implemented:

�rst step: estimate a 2SLS using instruments

S =
�
(I�G)X (I�G)GX (I�G)G2X

�
and obtain bθ2SLS

second step: estimate a 2SLS with instruments bZ = Z �bθ2SLS�2

2Please refer to the report
(University of Southampton) February 15, 2013 22 / 25



Inferences

Statistically signi�cant exogenous social e¤ects: age, presence of
parents, parents�education, parents�participation in the labour
market

e.g. student�s recreational activities index depends negatively on the
mean age of his friends and positively on friends�mean of parents�
labour participation

Statistically signi�cant own characteristics: age, gender, race, parents�
education, parents�participation in the labour market

e.g. index decreases with age and with being white, increases with
being female and parents�labour participation

Endogenous social e¤ect is signi�cant at 10% level

the mean of student�s friends�actions has a positive impact on his
recreational activity

(University of Southampton) February 15, 2013 23 / 25



Do we have a theoretical model backing up the econometrics model?

Local average (G∗) or local aggregate (G) model?

Microfoundations?



Local-aggregate model

Finite set of agents  = {1     } is partitioned into max networks

Adjacency matrix  = []

Utility

(;) =
³
 +  + 

´
 −

1

2
2 + 1

P
=1



where 1 ≥ 0.



Unique Nash equilibrium if 0 ≤ 1
max
  1 (max = max  the

highest degree of network ) given by (best-reply function for individual

)

 = 1
P
=1

 +  +  + 

Matrix form ( =  +  + , Π = (1 · · ·  )0)

 = ( − 1)
−1Π



Local-average model

∗ = [∗], where 
∗
 = : Row-normalized adjacency matrix

of network .

By construction, 0 ≤ ∗ ≤ 1.

Examples

1 2 3  =

⎡⎢⎣ 0 1 0
1 0 1
0 1 0

⎤⎥⎦ and ∗ =

⎡⎢⎣ 0 1 0
12 0 12
0 1 0

⎤⎥⎦ 
Figure 1: an example network with corresponding adjacency matrices



Denote:  =
P
∈

∗ the average effort of individual ’s
friends.

Payoff:

(;) =
³
∗ + ∗ + ∗

´
 −

1

2
2 −



2
( − )

2

with  ≥ 0.



If 0 ≤ 2  1, unique Nash equilibrium given by:

 = 2
P
=1

∗ +  +  + 

where 2 = (1 + ),  = (1 − 2)
∗
,  = (1 − 2)

∗
, and

 = (1− 2)
∗
.

Matrix form

 = ( − 2
∗
)
−1Π



Hybrid network model

Integrating local-aggregate and local-average effects into the same model.

Utility function

(;) =
³
∗ + ∗ + ∗

´
 −

1

2
2 + 1

P
=1



−2
2
( − )

2

where 1 ≥ 0 and 2 ≥ 0



Unique NE if 1 ≥ 0, 2 ≥ 0 and 1max + 2  1,

 = 1
P
=1

 + 2
P
=1

∗ +  +  + 

where 1 = 1(1 + 2), 2 = 2(1 + 2),  = (1 − 2)
∗
,  =

(1− 2)
∗
, and  = (1− 2)

∗
.



Comparisons: Local aggregate vs local average model

Consider the case where all individuals are ex ante identical apart from

their positions in the network such that  =  for  = 1 · · ·  .

For the local-aggregate model, if 0 ≤ 1
max
  1, the unique Nash

equilibrium is:

 =  ( − 1)
−1 

where  is an -dimensional vector of ones.

( − 1)
−1  represents the Bonacich centrality of a network. The

more central an individual’s position is, the higher is her equilibrium

effort and equilibrium utility.



Local-average model: if 0 ≤ 2  1, the the unique interior Nash

equilibrium is

 = (1− 2)
−1

The position in the network plays no role and all individuals provide the

same equilibrium effort level (1− 2) in network .

Fundamental differences with the local-aggregate model where, even if

agents are ex ante identical, because of social multiplier effects, the

position in the network determines their effort activity so that more

central persons exert more effort than less central individuals



Econometrics models

Let  = (1 · · ·  )0,  = (1 · · ·  )0,

and  = (1 · · ·  )0.

 = 1 + +∗ +  + 

 = 2
∗
 + +∗ +  + 

 = 1 + 2
∗
 + +∗ +  + 



Identification for the local aggregate model

 = 1 + +∗ +  +  (2)



Proposition 0.1

• When  has non-constant row sums for some network , E(1) of

the local-aggregate network model (2) has full column rank if: (i)

∗∗ are linearly independent and || + || + || 6= 0;

or (ii) ∗ = 1 + 2 + 3
∗
 and Λ1 has full rank.

• When  has constant row sums such that  =  for all , E(1)

has full column rank if: (iii) ∗ ∗ ∗2 ∗2 are linearly in-
dependent and ||+ || 6= 0; (iv) ∗ ∗ ∗2 are linearly inde-
pendent, ∗2 = 1 + 2+ 3

∗+ 4
∗+ 5

∗2, and Λ2 has full

rank; or (v)  =  for all , ∗ ∗2 ∗3 are linearly independent,
and 1 +  6= 0.



The identification conditions for the local-aggregate model are weaker

than the conditions for the local-average model in Bramoullé et al.

(2009).

Here is an example (star-shaped network) where identification is possible

for the local-aggregate model but fails for the local-average model.

The adjacency matrix  is a block-diagonal matrix with diagonal blocks

being .

For the row-normalized adjacency matrix ∗, it is easy to see that
∗3 = ∗. Thus local-average model is not identified.

 has non-constant row sums and ∗∗ are linearly inde-
pendent: local-aggregate model can be identified.

Identification easier with the local-aggregate model



Figure 2 gives an example where identification is possible for the local-

aggregate model but fails for the local-average model.

3 4
1

2

 =

⎡⎢⎢⎢⎣
0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎤⎥⎥⎥⎦ ∗ =

⎡⎢⎢⎢⎣
0 13 13 13
1 0 0 0
1 0 0 0
1 0 0 0

⎤⎥⎥⎥⎦ 



Here is another example where the local-average model cannot be iden-

tified while the local-aggregate model can.

Top of Figure 3 (regular network or circle).

Bottom of Figure 3 (bi-partite network).



1 4

2 3
1 =

⎡⎢⎢⎢⎣
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤⎥⎥⎥⎦ ∗1 =

⎡⎢⎢⎢⎣
0 12 0 12
12 0 12 0
0 12 0 12
12 0 12 0

⎤⎥⎥⎥⎦ 

1

2

3

4

5

6

2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 13 13 13
0 0 0 13 13 13
0 0 0 13 13 13
13 13 13 0 0 0
13 13 13 0 0 0
13 13 13 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦




For these two networks, the adjacency matrix  is a block-diagonal

matrix with diagonal blocks being either 1 or 2 given in Figure 3.

For the row normalized adjacency matrix ∗, it is easy to see that
∗3 = ∗. Local-average model not identified.

The two different types of networks have different row sums,

∗ ∗ ∗2 are linearly independent and ∗2 = .

Local-aggregate model identified.



Which model is better?

J test for model selection

The local-aggregate and local-average models can be written more com-

pactly as:

1 :  = 1 +∗1 + 1 + 1

2 :  = 2
∗ +∗2 + 2 + 2

where ∗ = (∗), and 1 2 are corresponding vector of coeffi-

cients.



The test of model 1 against model 2

To test against the model specification 2, one can estimate the fol-

lowing augmented model of 1,

 = 12 + 1 +∗1 + 1 + 1

where 2 is a predictor of  under 2 such that 2 = 2
∗ +

∗2 + 2.

Thus, a test of the null model against the alternative one would be in

terms of the hypotheses: 0 : 1 = 0 against  : 1 6= 0.

If the estimated 1 is insignificant, then this is evidence against model

2.



The test of model 2 against model 1

The test of model 2 against model 1 can be carried out in a similar

manner.

Consider the following augmented model of 2,

2 :  = 21 + 2
∗ +∗2 + 2 + 2

where 1 is a predictor of  under 1 such that 1 = 1 +

∗1 + 1.

Thus, the test of the null model against the alternative would be in

terms of the hypotheses 0 : 2 = 0 against  : 2 6= 0.

If the estimated 2 is significant, then that is evidence against model

2.



Empirical Application

Data

Unique database on friendship networks from the National Longitudinal
Survey of Adolescent Health (AddHealth).

Adolescents’ behavior in the United States by collecting data on students
in grades 7-12 from a nationally representative sample of roughly 130
private and public schools in years 1994-95.

Every pupil attending the sampled schools on the interview day is asked
to compile a questionnaire (in-school data) containing questions on re-
spondents’ demographic and behavioral characteristics, education, fam-
ily background and friendship.

This sample contains information on roughly 90,000 students.



A subset of adolescents selected from the rosters of the sampled schools,

about 20,000 individuals, is then asked to compile a longer questionnaire

containing more sensitive individual and household information (in-home

and parental data).

Those subjects of the subset are interviewed again in 1995—96 (wave

II), in 2001—2 (wave III), and again in 2007-2008 (wave IV).

Here only wave I because the network information is only available in

the first wave.



Friendships: Pupils were asked to identify their best friends from a

school roster (up to five males and five females).

We denote a link from  to  as  = 1 if  has nominated  as her

friend in network , and  = 0, otherwise.

Four different outcomes: () school performance; () sport activities,

such as playing baseball, softball, basketball, soccer or football; ()

screen activities, such as playing video or computer games, () criminal

activities.



Empirical results

Tests of 1 and 2 of the hybrid network model

Tests of the augmented models where the null hypothesis is 1 = 0,

i.e., the local average model does not matter for the first model, and

2 = 0, i.e., the local aggregate model does not matter for the second

model.



Screen activities: peer effects are not important in explaining own

screen activity.

The latter appears to be explained by own characteristics and contextual

effects.

For example, male, black and lower grade students are more likely to

participate in screen activities than other students.



Sport activities: it is the sum of the effort of the friends (i.e. the

local aggregate model) and not their average effort that matters for

explaining own sport activity.



For education (i.e. GPA index), both social norms (local average) and

social multiplier (local aggregate) matter.

However, the magnitude of the effects is higher for the local-average

model compared to the local-aggregate one.

A one standard deviation increase in the average activity of individual

’s reference group translates roughly into a 029 increase of a standard

deviation of individual ’s GPA score while it is only 010 for the sum of

activity of friends.



For crime (i.e. crime index), only the local-aggregate model matters,

i.e. sum of friends.



Policy implications

An effective policy for the local-average model would be to change

people’s perceptions of “normal” behavior (i.e. their social norm) so

that a group-based policy should be implemented

For the local-aggregate model, this would not be necessary and an

individual-based policy should instead be implemented.



Crime

Local-aggregate model: key-player policy is the most effective policy

since the effort of each criminal and thus the sum of one’s friends crime

efforts will be reduced.

The removal of the key player can have large effects on crime because

of the feedback effects or “social multipliers” at work.



Education

Teachers:

Debate in the United States of giving incentives to teachers to improve

teacher quality.

If the local aggregate model is at work among teachers, then we would

need to have a teacher-based incentive policy since teachers will influ-

ence each other.

If the local average model, then one should implement a school-based

incentive policy because this will be the only way to change the social

norm of working hard among teachers.



Students

Local-aggregate model: any individual-based policy (for example, vouch-

ers) would be efficient.

Here local-average model: should change the social norm in the school

or the classroom and try to implement the idea that it is “cool” to work

hard at school (acting white literature).

Example of a policy that has tried to change the social norm of students

in terms of education is the charter-school policy.

The charter schools are very good in screening teachers and at selecting

the best ones.



In particular, the “No Excuses policy” (Angrist et al., 2010, 2012) is a

highly standardized and widely replicated charter model that features a

long school day, an extended school year, selective teacher hiring, strict

behavior norms, and emphasizes traditional reading and math skills.

The main objective is to change the social norms of disadvantage kids

by being very strict on discipline.



The local-average model can also help us design an adequate policy in

terms of tracking at school (Betts, 2011).

Should we “track” students in a way that separates high achievers from

low achievers or should we mix them?

Local-average: Should separate high achievers from low achievers but

then have an exogenous intervention (charter school) on the low achiev-

ers in order to change their social norms.

Local aggregate: Classes should be heterogenous with respect to stu-

dents’ test scores, with the high performing students distributed among

the classes.

Under this scenario, high achievers will have a positive impact on low

achievers but will not be able to change the social norm of the low

achievers.



To sum-up:

An effective policy for the local-average model would be to change

people’s perceptions of “normal” behavior (i.e. their social norm) so

that a group-based policy should be implemented

For the local-aggregate model, this would not be necessary and an

individual-based policy should instead be implemented.
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Motivation

Consumption may be in�uenced by socially proximate agents, i.e.,
friends, neighbors, co-workers, etc. (Veblen, 1899; Duesenberry, 1948)

It is hard to �nd clean evidence of "peer e¤ects"

peers de�nition
the "re�ection" problem - endogeneity vs. correlated shocks

The existence of network e¤ects may be relevant from a policy point
of view, as meaningful multiplier e¤ects magnify intended e¤ects of a
policy

Network e¤ects may also create intertemporal and/or intratemporal
distortions that may be policy relevant
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Our goals

Test if and how much co-worker networks a¤ect consumption

Investigate the possible mechanisms behind our �ndings

Conspicuous Consumption or Status
Keeping Up with the Jensens (KUJ)
Risk Sharing

Understand aggregate implications of consumption network e¤ects

3 / 44



Our paper

Previous work:

individuals sharing similar characteristics (Maurer and Meier, 2008)
racial group within a US state (Charles et al., 2009)
neighbors within a zip code (Kuhn et al., 2011), or city (Ravina, 2010)

Co-workers as a more reasonable group to investigate peer e¤ects

Adult-life equivalent of class-mates
Spend more time with co-workers than with family members
Evidence from sociology - friendship as determinant of co-workership
(Granovetter, 1995)

Data

Administrative tax records on Danish households (including data on
income and assets), coupled with information on place of work
Use network structure to tackle identi�cation problem - spouses add
nodes to otherwise isolated networks
Use a household consumption survey to investigate mechanisms
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Preview of the Results

Peers�consumption a¤ects household consumption

In particular husbands�co-workers�consumption has a signi�cant,
non-negligible, positive e¤ect

Estimate a multiplier e¤ect of about 1.4

Preliminary evidence

Mechanisms: suggestive of "Keeping-up-with-the-Jensens"
E¤ects on aggregate consumption
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An empirical model: Linear-in-means (1)

Standard Manski�s problem (1993)

ch,t= α+ β1c
w
t +β2c

m
t +γ1X

w
t +γ2X

m
t +δ1Xwh,t+δ2Xmh,t+εh,t

Where h, t,w ,m indicate household, time, wife and husband respectively.

cwh,t , c
m
h,t : (average) logged (per adult equivalent) consumption levels of the

wife�s and husband�s co-workers;
Xwh,t ,X

m
h,t : (average) characteristics of the wife�s and husband�s co-workers;

Xwh,t ,X
m
h,t : the wife�s and husband�s observable characteristics (permanent

income determinants)

Main parameters of interest:

β0s : endogenous e¤ect
γ0s : contextual e¤ects
δ0s : ancillary parameters of interest
Correlated e¤ects (through εh,t ) also allowed for (i.e., common �rm shock).
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An empirical model: Linear-in-means (2)

Identi�cation of the parameters of interest in this model is notoriously
problematic:

Re�ection problem ! Simultaneity
Self-selection/Correlated e¤ects ! E

�
εjX ,X

�
6= 0

Our solution:

Assume networks do not perfectly overlap
Construct the network of co-workers (distance-1 peers), co-workers�
spouses (distance-2), co-workers of co-workers�spouses (distance-3),
and so on.
�Valid� instruments for co-workers�("distance-1") consumption: The
X�s of distance-3 peers.
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Identification: the Stanford Example —Luigi’s coworkers
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Identification: the Stanford Example —Luigi (d-1)
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Identification: the Stanford Example —Luigi (d-2)
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Identification: the Stanford Example —Luigi (d-3)
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Identification: the Stanford Example —Luigi (d-4)
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Identification: the Stanford Example —All

Pistaferri’s (distance-1) peers. Luigi (G. De Giorgi+J. Pencavel), Marina (G. Iacca+

F.Milki)

Instruments (distance-3 peers): (F. Berta+V. Imbe) , (S. Lee+T. Ross), and (J. Black

+H. Heinze)
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An Actual Network from our data

Consider family (56) + and +
His peers: Red symbols
Her peers:
Instruments:     ,     , and
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Identi�cation: An Example (1)

Take simpli�ed "Stanford" network:

L. Pistaferri

G. De Giorgi

V. Imbe

M. Pistaferri

P. De Giorgi

A. Imbe

cP = α+ βcD + γxD + δxP + εP

cD = α+ β

�
cP + cI
2

�
+ γ

�
xP + xI
2

�
+ δxD + εD

cI = α+ βcD + γxD + δxI + εI
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Identi�cation: An Example (2)

cD is endogenous in cP equation, i.e., E (εP jcD ) 6= 0:

cP = α+ βcD + γxD + δxP + εP

cD = α+ β

�
cP + cI
2

�
+ γ

�
xP + xI
2

�
+ δxD + εD

cI = α+ βcD + γxD + δxI + εI

In fact: Write reduced form for cD :

cD = f (xP , xD , xI , εD , εP , εI )

so cD moves with εP .

Also, reduced form for cI is:

cI = g (xP , xD , xI , εD , εP , εI )
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Identi�cation: An Example (3)

Need an instrument for cD in cP�s equation

What are the variables that explain cD (condition I for an IV to be
valid) and do not belong to cP (condition II for an IV to be valid)?

cP = α+ βcD + γxD + δxP + εP

cD = α+ β

�
cP + cI
2

�
+ γ

�
xP + xI
2

�
+ δxD + εD

List includes:
1 cP ! of course not
2 cI ! No, because in the reduced form cI = g

�
xP , xD , xI , εD , εP , εI

�
3 xP , xD ! No, because they are "included" variables
4 xI ! Yes! Distance-3 peer�s exogenous characteristics.
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Identi�cation: A General Model (1)

Identi�cation strategy similar to Bramoullé et al. (2009), Calvó-Armengol et al. (2009),

De Giorgi et al. (2010): It relies on the network structure

In matrix notation, household level analysis, and with a single covariate x:

c=αi+βGc+ γGx+ δx+ε

where G is a n � n (weighting) adjacency matrix with generic element Ghk
Ghk = 1 f1/ (nh � 1) if h, k co-workersg, with nh the size of h�s �rm, and
h, k = 1, ..., n
Assume ψ a network level shock, so that E (εjx) 6= 0, E (εjψ, x) = 0. Premultiply by G:

Gc = αi+ βG2c+ γG2x+ δGx+Gε

Take within network transformation (which eliminates correlated e¤ect):

(I�G) c = βG (I�G) c+ γG (I�G) x+ δ (I�G) x+ (I�G) ε
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Identi�cation: A General Model (2)

Reduced form (no worker is isolated) of above model is:

(I�G) c = (I�βG)�1 (γG+ δ) (I�G) x+ (I�βG)�1(I�G) ε

Recall that (I�βG)�1 = lim
l!∞

l

∑
k=0

βkGk , for jβj 2 (0, 1) . Expand (2nd term) and rearrange

to yield:

(I�G) c =δ(I�G) x+ (γ+ βδ) (I�G)Gx+β (γ+ βδ) (I�G)G2x+β2γ(I�G)G3x+ v

As long as (γ+ βδ) 6= 0, and I,G,G2,G3 linearly independent � then the 3 parameters

of interest are identi�ed

Note: Identi�cation requires availability of co-workers of co-workers�spouses (or

distance-3 nodes, as we consider husband and wife to be distance-1 peers).
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Data (1)

We use administrative longitudinal tax records for the Danish
population (1980-1996)

Wealth tax abolished in 1996

We match these data with the IDA, an employer-employee data set ,
which includes demographics and �rm ID (plant level) ) Co-workers

We also match the tax records with the DES, a CEX-type
cross-sectional survey (1994-96)
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Data (2)

Household heads aged 18-65 ( Descriptives )

Focus on couples where both spouses working
Drop couples where spouses are working in the same plant

Consumption is not measured in administrative tax data.

We use the dynamic budget constraint to calculate total consumption
Between 1980 and 1996, households paid a tax on assets
Consumption is calculated as the di¤erence between after-tax annual
income and asset changes

Cht = Yht � ∆Aht

Similar to Browning and Leth-Petersen (2005) and Koijen, Van
Nieuwerburgh and Vestman (2012) ( Details )

We use the DES primarily to investigate the "mechanisms" behind
our �ndings
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Peers

In the baseline results peers are co-workers within the same plant and
occupation (blue collar, white collar, manager)

We also consider alternative de�nitions of co-workers

Future drafts: Neighbors (multiplexity), and alternative weighting
scheme
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Results: Main Table (1)

Table 4: Baseline Results

OLS OLSX IVX IVFEX
(1) (2) (3) (4)

Wife�s peers ln C 0.41*** 0.16*** 0.20*** 0.06
(0.001) (0.002) (0.027) (0.050)

Husband�s peers ln C 0.46*** 0.20*** 0.44*** 0.29***
(0.001) (0.002) (0.030) (0.050)

p-value [βh = βw ] 0.0000 0.0000 0.0000 0.0000

F-stat �rst stage
Wife 976.64
Husband 767.98
Endogeneity Wu-Hausman F [p-value] 0.00

Observations 4,514,496

Dependent variable: Log of adult equivalent consumption. Controls: Age, Age2 , Years of schooling, Occupation dummies, Firm

size. Contextual controls: Age, Age2 , Years of schooling, share of female peers. Household controls: Year dummies,

Municipality dummies, Sector dummies, Sector� Year dummies. IV�s: age, years of schooling, share of female peers, occupation

dummies
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Results: Main Table (2)

Table 5: Imposing the restriction βh = βw

OLS OLSX IVX IVFEX
(1) (2) (3) (4)

Household peers ln C 0.44*** 0.18*** 0.31*** 0.17***
(0.001) (0.001) (0.019) (0.034)

First stage F � � 907.44
Endogeneity Wu-Hausman F [p-value] 0.00

N 4,514,496

Dependent variable: Log of adult equivalent consumption. Controls: Age, Age2 , Years of schooling, Occupation dummies, Firm

size. Contextual controls: Age, Age2 , Years of schooling, share of female peers. Household controls: Year dummies,

Municipality dummies, Sector dummies, Sector� Year dummies. IV�s: age, years of schooling, share of female peers, occupation

dummies
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Results: Summary

OLS is biased because of usual reasons: Self-selection, endogeneity, re�ection,

measurement error

IV�s and FE address all these issues at once

Our preferred estimator is IVFEX, where a clear di¤erence emerges between

husband�s and wife�s network e¤ects

We estimate elasticities of 0.29 and 0.06 (insigni�cant) for husband and wife,

respectively. Pooled elasticity: 0.17

These estimates imply a multiplier e¤ect of about 1.2-1.4 (pooled/husbands)

But aggregate e¤ects will depend also on "degree of connectedness"
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