Investments in Productivity under Monopolistic Competition

I.Bykadorov, E.Zhelobodko, S.Kokovin

N.Novgorod, 2012

Bykadorov,Zhelobodko,Kokovin Investments in Productivity under Monopolistic Competition

- (**Theor.question**): Impact of market size on *productivity* in monopolistic competition;

- (**Setting**): (1) variable elasticity of substitution (VES), (2) each firm chooses investment in decreasing marginal cost; (3) homogenous firms

- (**Results**): Impact of Growing market:

1. [Each firm's R&D investment increases \uparrow , price decreases \downarrow] \Leftrightarrow

["Relative love for variety" (elasticity of inverse demand) increases].

2. Total R&D investment in economy go up \uparrow always.

3. Socially optimal R&D investment can be bigger or smaller than market equilibrium

2 Impact of market size on productivity

Bykadorov,Zhelobodko,Kokovin Investments in Productivity under Monopolistic Competition

Motivation: empirics and theory

Controversy on Competitiveness and innovations:

- (+) Positive empirical correlation between competition (more firms) and innovations: Baily & Gersbach (1995), Geroski (1995), Nickell (1996), Blundell, Griffith & Van Reenen (1999), Galdón-Sánchez & Schmitz (2002), Symeonidis (2002), etc.
- (+-) Non-monotone, bell-shape **empirical** correlation: Aghion et al. (2005).
- (+) Positive theoretical correlation: Vives (2008), the model of oligopolistic competition with *free entry* (⇒ endogenous number of firms)

We extend Vives to more realistic model:

- monopolistic competition, general equilibrium
- comparative statics of market equilibria + social optimum

Background literature

- 1. Basic idea of Monopolistic Competition: many firms price-makers produce "varieties", free entry, fixed and variable costs => increasing returns: Chamberlin (1929), Dixit and Stiglitz (1977), for trade - Krugman (1979).
- 2. (Instead of CES or quadratic utility) MC model was generalized to any VES utility: Zhelodobko, Kokovin, Parenti & Thisse (2012)
- Oligopolistic choice of technology in quasilinear setting: Vives (2008): firm's R&D investment in economy go up↑ with market size always, and number of varieties can increase or decrease.

We combine *choice of technology* a'la Vives - with *monop. competition.* It needs VES, because under CES combining is uninteresting: zero effects.

General MC assumptions

- Increasing returns to scale in a firm, due to investment cost f and marginal costs c(f). Firms are identical.
- Each firm *i* produces one "variety" as a *price-maker*, but its demand $x_i(p_i, p_j...)$ is influenced by other varieties.
- L identical consumers, each j ≤ L generates a demand function x_j, maximizing additive utility function U = ∫_{i≤N} u(x_i)di. Concavity of u(.) (i.e., elasticity of demand or substitution among varieties) determines intensity of competition.
- Number of firms is big enough to ignore one firm's influence on the whole industry/economy.
- Free entry drives all profits to zero.
- Labor supply/demand is balanced.

Basic model of 1x1x1 economy. Consumers

- One diversified sector has an interval [0, N] of firms=varieties *i*-th brand is *i*-th firm, $i \in [0, N]$,
- L identical consumers, each has 1 of labor and chooses an (infinite-dimensional) consumption vector x(·): [0, N] → ℝ₊ i.e., a non-negative integrable function x:

$$\int_0^N u(x_i) di \to \max_{\times (.)}; \quad \int_0^N p_i x_i di \le 1.$$

Here: utility function u(·), price vector p(·): [0, N] → ℝ₊; price p(i) ≡ p_i for *i*-th variety, demand x(i) ≡ x_i for *i*-th variety. Lagrange multiplier λ, = marginal utility of income. FOC: the inverse demand p for *i*-th variety is:

$$\mathbf{p}(x_i,\lambda) = \frac{u'(x_i)}{\lambda}$$

Producers: marginal cost function of investments, FOC

• *i*-th firm knows its inverse-demand function $p_i(x_i, \lambda)$, sells $q = Lx_i$ and maximizes profit

$$\pi = Lx_i \cdot [p_i(x_i, \lambda) - c(f_i)] - f_i \to \max_{x_i, f_i \in \mathbb{R}_+}.$$

c is marginal cost and f is fixed cost measured in labor (total cost is $cx_{\rm i}L+f)$

- Marginal cost function $c(\cdot)$ of **investment** or fixed cost f:
 - c'(f) < 0 (more expensive factory would have smaller marginal costs)
 - c''(f) > 0 (decreasing returns to scale of investments, at equilbrium)
- Symmetric equilibrium is (x, f, p, N, λ) satisfying all FOC and budget, free entry and labor balance:

不是下 不是下

Model: Equilibrium (x, f, p, N, λ)

Consumers' FOC:

$$p = \mathbf{p}(x,\lambda) = u'(x)/\lambda$$

Producers' FOC:

$$\frac{\partial \pi(x,f)}{\partial x} = 0, \qquad \qquad \frac{\partial \pi(x,f)}{\partial f} = 0$$

• Zero-profit condition (free entry):

$$\pi = (\mathbf{p}(x,\lambda) - c(f))xL - f = 0.$$

• Labor balance (equivalent to the budget constraint):

$$(f+c(f)x)N=L$$

About $\mathscr{E}_g, r_g, r_{g'}, r_{\ln g}, r'_g$, etc.

Definition of elasticity: $\mathscr{E}_g(z) = \frac{zg'(z)}{g(z)}$ Elasticity of the product is the sum of elasticities: $\mathscr{E}_{gh}(z) = \mathscr{E}_g(z) + \mathscr{E}_h(z)$ The interconnection between elasticity and Arrow-Pratt measure:

$$r_g(z) = -\frac{zg''(z)}{g'(z)} = -\mathscr{E}_{g'}(z)$$

One has: $r_{g'}(z) = -\frac{zg'''(z)}{g''(z)}$, $r_{|ng}(z) = -\frac{z \cdot (|ng(z))''}{(|ng(z))'} = \mathscr{E}_g(z) + r_g(z)$ Moreover

$$r'_{g}(z) \cdot z = (1 + r_{g}(z) - r_{g'}(z)) r_{g}(z)$$
$$\mathscr{E}'_{g}(z) \cdot z = (1 - \mathscr{E}_{g}(z) + \mathscr{E}_{g'}(z)) \mathscr{E}_{g}(z) = (1 - r_{\ln g}(z)) \mathscr{E}_{g}(z)$$

It is important to note:

If
$$g(z)$$
 is CES then $r_g'(z) = \mathscr{E}_g'(z) = 1 - r_{ ext{ing}}(z) = 0$

Equilibrium equations in terms of (x, f)

We use the Arrow-Pratt measure of concavity defined for any function g :

$$r_g(z) = -\frac{zg''(z)}{g'(z)}.$$

Proposition. Equilibrium consumption/investment (x^*, f^*) is the solution to

$$\frac{r_u(x)x}{1-r_u(x)} = \frac{f}{Lc(f)}$$

$$(1 - r_{\ln c}(f) + r_c(f))(1 - r_u(x)) = 1$$

when SOC conditions hold:

$$r_u(x) < 1,$$
 $2 - r_{u'}(x) > 0,$ $(2 - r_{u'}(x)) r_c(f) > 1.$

Differentiating the system w.r.t. $L \Rightarrow$ Theorem of comparative statics:

Theorem: signs of elasticities w.r.t. market size L:

IEID (DEID)- Increasing (Decreasing) Elasticity of the Demand

Patterns:	DED	CES	IED				
Elasticities	$r'_{u} < 0$	$r'_u = 0$		$r'_{u} > 0$			
w.r.t. <i>L</i> of:	$r_{ nc} > 1$	$r_{\ln c} \neq 1$	$r_{ nc} > 1$	$r_{\ln c} = 1$	$r_{ nc } < 1$		
Ef	< 0	= 0	> 0	\in (0,1)	>0		
ENF	>1	=1	\in (0,1)	= 1	> 1		
E <u>NF</u>	> 0	= 0	\in (-1,0)	= 0	>0		
Ep	> 0	= 0	< 0	$=-r_u\in(-1,0)$	< 0		
Eq	< 0	= 0	$\in (0,1)$	=1	> 1		
EN	>1	=1	$\in (0,1)$	$= r_u \in (0,1)$	< 1		

- Shortly, *IED*+larger market \Rightarrow bigger firms \Rightarrow higher productivity
- Interpretation: bigger output motivates higher cost-reducing investment. But: bigger output is guaranteed for larger market only under *IED*!

Theorem: Interpretation

- CES case is the borderline between markets with DED or IED
- $L \uparrow \Rightarrow DED: \downarrow$ investments, IED: \uparrow investments
- Investments are *positively correlated* with the size of the firm:
 - bigger output planned motivates higher cost-reducing investment
- But bigger output is not guaranteed for larger market:
 - $DED \Rightarrow \downarrow$ both q = Lx and f because $N \uparrow$ too fast: \Rightarrow excessive competition \Rightarrow output $\downarrow \Rightarrow \downarrow$ the motive to invest in productivity
 - But: Nf always \uparrow because growing N dominates even when $f\downarrow$
- **Prices**: as ZKPT(2012): ↑ under *DED*, ↓ under *IED*. Explanation:
 - $L \uparrow \Rightarrow$ profits $\uparrow \Rightarrow$ invite **new** firms $\Rightarrow N \uparrow \Rightarrow$ competition $\uparrow \Rightarrow x \downarrow$
 - Paradoxically: under DED: too convex demand function \Rightarrow price \uparrow
- Behavior of x and N: generally as in ZKPT (2012), but a new fashion in the exotic case $(r'_u > 0, r_{\ln c} < 1)$
- Interestingly, the nature of c(f) is the criterion only for \uparrow / \downarrow of x. Only under sufficiently big elasticity of c(f) ($r_{|nc}(f) > 1$), x \downarrow

The results of ZKPT (2012), Krugman (1979)

• Zhelodobko, Kokovin, Parenti & Thisse (2012):

	$r'_{u} < 0$	$r'_u = 0$	$r'_{u} > 0$
Ep	+	0	
\mathscr{E}_{q}	+	0	
\mathcal{E}_{N}	>1	=1	\in (0,1)

• Krugman (1979) (Nobel Prize, 2008):

	$r'_u < 0$ (without strict proofs)
Ep	+
\mathscr{E}_q	+
\mathcal{E}_{N}	+

Model Impact of market size on productivity Social optimum

Comparison with of ZKPT(2012), Krugman (1979)

Patterns:	DED	CES	IED				
Elasticities	$r'_u < 0$	$r'_u = 0$		$r'_{u} > 0$			
w.r.t. <i>L</i> of:	$r_{ nc} > 1$	$r_{\ln c} \neq 1$	$r_{ nc } > 1$	$r_{\ln c} = 1$	$r_{ nc } < 1$		
Ef	< 0	= 0	> 0	\in (0,1)	> 0		
ENF	>1	=1	\in (0,1)	= 1	> 1		
E <u>NF</u>	> 0	= 0	\in (-1,0)	= 0	>0		
Ep	> 0	= 0	< 0	$=-r_u\in(-1,0)$	< 0		
\mathcal{E}_q	< 0	= 0	$\in (0,1)$	=1	> 1		
EN	>1	=1	$\in (0,1)$	$= r_u \in (0,1)$	< 1		

	Z	KPT(201	.2)		Krugman(1979)
	$r'_{u} < 0$	$r'_u = 0$	$r'_{u} > 0$		$r'_{u} < 0$
Ep	+	0	_	Ep	+
\mathcal{E}_q	+	0	_	\mathscr{E}_q	+
\mathcal{E}_N	>1	=1	\in (0,1)	EN	+

Bykadorov,Zhelobodko,Kokovin Investments in Productivity under Monopolistic Competition

Social optimum compared with market equilibrium

In symmetric solution optimality means that x^{opt} , f^{opt} and N^{opt} are welfare-optimizing:

$$Nu(x) \rightarrow \max_{N,x,f}$$
 s.t. $N(c(f)xL+f) = L$

IEU – increasing elasticity of utility: $\mathcal{E}'_u(x) > 0$

DEU (CEU) - decreasing (constant) elasticity of utility

$IEU: r_{ n u} < 1 \Leftrightarrow \mathscr{E}'_u(x) > 0$	$CEU: r_{\ln u} = 1$	$DEU: r_{ n u} > 1 \Leftrightarrow \mathscr{E}'_u(x) < 0$
purchase size $x^{opt} < x^*$	$x^{opt} = x^*$	$x^{opt} > x^*$
investment $f^{opt} < f^*$	$f^{opt} = f^*$	$f^{opt} > f^*$
mass of firms $N^{opt} > N^*$	$N^{opt} = N^*$	$N^{opt} < N^*$

Optimal total investment $(Nf)^{opt} \equiv N^{opt} \cdot f^{opt}$ and equilibrium total investment $(Nf)^* \equiv N^* \cdot f^*$ are related as

$$\frac{(1-r_{\ln u})(1-r_{\ln c}) < 0 || (1-r_{\ln u})(1-r_{\ln c}) = 0 || (1-r_{\ln u})(1-r_{\ln c}) > 0}{(Nf)^{opt} > (Nf)^* || (Nf)^{opt} = (Nf)^* || (Nf)^{opt} < (Nf)^* || (Nf)^$$

Investments in Productivity under Monopolistic Competition

Comparative statics of social optimum

Theorem. The signs of elasticities of soc.optimal x^{opt} , f^{opt} and N^{opt} w.r.t. market size L are

	IEU	CEU	DEU			
	$r_{ n u} < 1$	$r_{\ln u} = 1$	$r_{ n u} > 1 \Leftrightarrow \mathscr{E}'_u(x) < 0$			
	$r_{\ln c} > 1$	$r_{\ln c} \neq 1$	$r_{ nc } > 1$	$r_{ nc} = 1$	$r_{ nc } < 1$	
$\mathscr{E}_{f^{opt}}$	< 0	= 0	> 0	\in (0,1)	>0	
E _N optfopt	>1	=1	$\in (0,1)$	=1	> 1	
E <u>Noptfopt</u>	>0	= 0	\in (-1,0)	= 0	>0	
Eqopt	< 0	= 0	$\in (0,1)$	=1	>1	
ENopt	>1	=1	$\in (0,1)$	$\in (0,1)$	<1	

Behavior of optimal investment follows the 3 patterns governed by *DEU*, *CEU* and *IEU* cases of preferences: in DEU case each firm's investments goes up.

Mode Impact of market size on productivity Social optimum

Compared effects of equilibrium and optimum

	$r'_u < 0$	$r'_u = 0$	IED: $r'_u > 0$			
Elasticity	$r_{ nc} > 1$	$r_{\ln c} \neq 1$	$r_{ nc } > 1$	$r_{\ln c} = 1$	$r_{ nc } < 1$	
\mathscr{E}_{f^*}	< 0	= 0	> 0	\in (0,1)	> 0	
€N*f*	>1	=1	\in (0,1)	=1	> 1	
E <u>N*f*</u>	> 0	= 0	\in (-1;0)	= 0	>0	
\mathscr{E}_{q^*}	< 0	= 0	\in (0;1)	=1	> 1	
E _{N*}	>1	=1	$\in (0,1)$	$\in (0,1)$	<1	

	$r_{\ln u} < 1$	$r_{\ln u} = 1$	$DEU: r_{ n u} > 1 \Leftrightarrow \mathscr{E}'_u(x) < 0$		
Elasticity	$r_{\ln c} > 1$	$r_{\ln c} \neq 1$	$r_{ nc } > 1$	$r_{\ln c} = 1$	$r_{ nc } < 1$
Efopt	< 0	= 0	> 0	\in (0,1)	> 0
ENoptfopt	>1	=1	$\in (0,1)$	=1	> 1
E _{Nopt fopt}	> 0	= 0	\in (-1,0)	= 0	> 0
Eqopt	< 0	= 0	$\in (0,1)$	=1	> 1
ENopt	>1	=1	$\in (0,1)$	$\in (0,1)$	$<\overline{1}$

By kadorov, Zhelobodko, Kokovin Investments in Productivity under Monopolistic Competition

Conclusions, main directions of study

- In a larger economy firm size and productivity is higher ⇔ IED-utility;
- In welfare analysis, socially-optimal solutions show similar comparative statics as equilibria, and only under CES equilibria are optimal;
- Under heterogenous firms a-la Melitz, market size yields similar effects (?);
- Open economy case
- Thank you