RATIONAL INATTENTION

Alexandr Shapoval

Financial University under the Government of the Russian Federation The Institute of Earth Physics of Paris

Nizhnij, 2012

Our world is imperfect

- Dynamic stochastic general equilibrium models (DSGE)
- Sticky price, Calvo, 1983
- Sticky information, Mankiw, Reis, 2002
- Rational inattention, Sims, 2003
- Information constrained state-dependent pricing Woodford, 2009.
- Handbook of monetary economics, 2010

How much information in "YES"?

To be or not to be?
Does she love me?
Equally likely "Yes"/"No"

Choice	Yes	No
Prob	$1 / 2$	$1 / 2$

Pre-supposed "Yes"

Choice	Yes	No
Prob	0.99	0.01

Now answer "Yes" gives too small information. What about "No"?

How much information in "YES"?

Does she love me?
Equally likely "Yes"/"No"

Choice	Yes	No
Prob	$1 / 2$	$1 / 2$

Now answer "Yes" gives too small information. What about "No"?

How much information in "YES"?

Does she love me?
Equally likely "Yes"/"No"

Choice	Yes	No
Prob	$1 / 2$	$1 / 2$

Pre-supposed "Yes"

Choice	Yes	No
Prob	0.99	0.01

Now answer "Yes" gives too small information. What about "No"?

Information in "Yes"

"Yes" is very unlikely

Choice	Yes	I would think	\ldots
Prob	$1 / n$	$1 / n$	$1 / n$

Intuitive answer

Information from "Yes" depends on the probability of the alternatives.

Formal approach

Idea

Information about SOMETHING is the differences of chances for SOMETHING after and before the experiment

Formally,
 $\mathrm{P}\left(H_{1}\right) \Longrightarrow$ experiment (I ask her, does she love me) $\Longrightarrow \mathrm{P}\left(H_{1} \mid x\right)$

Bayes rule (the altermative appears)

$$
\mathrm{P}\left\{H_{1} \mid x\right\}=\frac{\mathrm{P}\left\{x \mid H_{1}\right\} \mathrm{P}\left\{H_{1}\right\}}{\mathrm{P}\left\{x \mid H_{1}\right\} \mathrm{P}\left\{H_{1}\right\}+\mathrm{P}\left\{x \mid H_{2}\right\} \mathrm{P}\left\{H_{2}\right\}}
$$

Under hypothesis H_{i} the random variable has distribution $f_{i}(x)$

Formal approach

Idea

Information about SOMETHING is the differences of chances for SOMETHING after and before the experiment

```
Formally,
P}(\mp@subsup{H}{1}{})\Longrightarrow\mathrm{ experiment (I ask her, does she love me) }\Longrightarrow\textrm{P}(\mp@subsup{H}{1}{}|x
```

Bayes rule (the altermative appears)

Under hypothesis H_{i} the random variable has distribution $f_{i}(x)$

Formal approach

Idea

Information about SOMETHING is the differences of chances for SOMETHING after and before the experiment

Formally,
$\mathrm{P}\left(H_{1}\right) \Longrightarrow$ experiment (I ask her, does she love me) $\Longrightarrow \mathrm{P}\left(H_{1} \mid x\right)$
Bayes rule (the altermative appears)

$$
\mathrm{P}\left\{H_{1} \mid x\right\}=\frac{\mathrm{P}\left\{x \mid H_{1}\right\} \mathrm{P}\left\{H_{1}\right\}}{\mathrm{P}\left\{x \mid H_{1}\right\} \mathrm{P}\left\{H_{1}\right\}+\mathrm{P}\left\{x \mid H_{2}\right\} \mathrm{P}\left\{H_{2}\right\}}
$$

Under hypothesis H_{i} the random variable has distribution $f_{i}(x)$

$$
\log \frac{\mathrm{P}\left\{H_{1} \mid x\right\}}{\mathrm{P}\left\{H_{2} \mid x\right\}}=\log \frac{f_{1}(x)}{f_{2}(x)}+\log \frac{\mathrm{P}\left\{H_{1}\right\}}{\mathrm{P}\left\{H_{1}\right\}}
$$

Definition

Information for H_{1}-selection versus H_{2} at the point x

$$
\log \frac{f_{1}(x)}{f_{2}(x)}=\underbrace{\log \frac{\mathrm{P}\left\{H_{1} \mid x\right\}}{\mathrm{P}\left\{H_{2} \mid x\right\}}}_{\begin{array}{c}
\text { chances for } H_{1} \\
\text { observation }
\end{array}}-\underbrace{\text { chances }}_{\text {after }} \begin{gathered}
\text { for } H_{1} \\
\text { observation }
\end{gathered} \quad \underbrace{\log \frac{\mathrm{P}\left\{H_{1}\right\}}{\mathrm{P}\left\{H_{1}\right\}}}_{\text {before }}
$$

Can it be negative?

Definition

Information for H_{1}-selection versus H_{2} at the point x

$$
\log \frac{f_{1}(x)}{f_{2}(x)}=\underbrace{\log \frac{\mathrm{P}\left\{H_{1} \mid x\right\}}{\mathrm{P}\left\{H_{2} \mid x\right\}}}_{\begin{array}{c}
\text { chances for } H_{1} \\
\text { observation }
\end{array}}-\underbrace{\text { chances }}_{\text {after }} \begin{gathered}
\text { for } H_{1} \\
\text { observation }
\end{gathered} \text { before }
$$

Can it be negative?

Average info for H_{1} vs. H_{2}

$$
I(1: 2)=\sum_{x}\left(\log \frac{f_{1}(x)}{f_{2}(x)}\right)
$$

Definition

Information for H_{1}-selection versus H_{2} at the point x

$$
\log \frac{f_{1}(x)}{f_{2}(x)}=\underbrace{\log \frac{\mathrm{P}\left\{H_{1} \mid x\right\}}{\mathrm{P}\left\{H_{2} \mid x\right\}}}_{\begin{array}{c}
\text { chances for } H_{1} \\
\text { observation }
\end{array}}-\underbrace{\log \frac{\mathrm{P}\left\{H_{1}\right\}}{\mathrm{P}\left\{H_{1}\right\}}}_{\text {after } \begin{array}{c}
\text { chances } \\
\text { observation }
\end{array}} \text { before }
$$

Can it be negative?

Average info for H_{1} vs. H_{2}

$$
I(1: 2)=\sum_{x}\left(\log \frac{f_{1}(x)}{f_{2}(x)}\right) f_{1}(x)
$$

Definition

Information for H_{1}-selection versus H_{2} at the point x

$$
\log \frac{f_{1}(x)}{f_{2}(x)}=\underbrace{\log \frac{\mathrm{P}\left\{H_{1} \mid x\right\}}{\mathrm{P}\left\{H_{2} \mid x\right\}}}_{\begin{array}{c}
\text { chances } \\
\text { observation }
\end{array}} \text { after }-\underbrace{\log \frac{\mathrm{P}\left\{H_{1}\right\}}{\mathrm{P}\left\{H_{1}\right\}}}_{\begin{array}{c}
\text { chances } \\
\text { observation }
\end{array}}
$$

Can it be negative?

Average info for H_{1} vs. H_{2}

$$
I(1: 2)=\sum_{x}\left(\log \frac{f_{1}(x)}{f_{2}(x)}\right) f_{1}(x)=\int f_{1}(x) \log \frac{f_{1}(x)}{f_{2}(x)} d x
$$

Definition

Information for H_{1}-selection versus H_{2} at the point x

$$
\log \frac{f_{1}(x)}{f_{2}(x)}=\underbrace{\log \frac{\mathrm{P}\left\{H_{1} \mid x\right\}}{\mathrm{P}\left\{H_{2} \mid x\right\}}}_{\begin{array}{c}
\text { chances for } H_{1} \\
\text { observation }
\end{array}}-\underbrace{\substack{\text { chances } \\
\text { observation }}}_{\text {after }} \underbrace{\log \frac{\mathrm{P}\left\{H_{1}\right\}}{\mathrm{P}\left\{H_{1}\right\}}}_{\text {for } H_{1}}
$$

Can it be negative?
Average info for H_{1} vs. H_{2}

$$
I(1: 2)=\sum_{x}\left(\log \frac{f_{1}(x)}{f_{2}(x)}\right) f_{1}(x)=\int f_{1}(x) \log \frac{f_{1}(x)}{f_{2}(x)} d x
$$

Deviation

$$
J(1: 2)=I(1: 2)+I(2: 1)
$$

Absolute average information about H_{1}

Example

$$
\begin{gathered}
\mathrm{P}\left\{H_{2}\right\}=1, \quad H_{1} \subset H_{2} \\
I(1: 2)=\log \left(\mathrm{P}\left\{H_{1} \mid x\right\}\right)-\log \left(\mathrm{P}\left\{H_{1}\right\}\right)
\end{gathered}
$$

Let $\mathrm{P}\left\{H_{1} \mid x\right\}=1$. Then $I(1: 2)=-\log \mathrm{P}\left\{H_{1}\right\}$. The information is large, if unconditional probability of H_{1} is small.

Absolute average information about H_{1}

Example

$$
\begin{gathered}
\mathrm{P}\left\{H_{2}\right\}=1, \quad H_{1} \subset H_{2} \\
I(1: 2)=\log \left(\mathrm{P}\left\{H_{1} \mid x\right\}\right)-\log \left(\mathrm{P}\left\{H_{1}\right\}\right)
\end{gathered}
$$

Let $\mathrm{P}\left\{H_{1} \mid x\right\}=1$. Then $I(1: 2)=-\log \mathrm{P}\left\{H_{1}\right\}$. The information is large, if unconditional probability of H_{1} is small.

Entropy

n hypotheses: $H_{1}, H_{2}, \ldots, H_{n}$
for each hypothesis: $\left(H_{i}, \bar{H}_{i}\right), I(1: 2)=-\log \mathrm{P}\left\{H_{i}\right\}$
Average information from an observation:

$$
\mathcal{H}=-\sum \mathrm{P}\left\{H_{i}\right\} \log \mathrm{P}\left\{H_{i}\right\}
$$

Computation of the entropy

Equally likely Yes/No

Yes	No
$1 / 2$	$1 / 2$
Units:	$\mathcal{H}=\log _{2} 2=1$ bit or $\quad \mathcal{H}=\log \frac{1}{2}-\frac{1}{2}=\log \frac{1}{2} \log 2$

Computation of the entropy

Equally likely Yes/No

Yes	No
$1 / 2$	$1 / 2$

$$
\mathcal{H}=-\frac{1}{2} \log \frac{1}{2}-\frac{1}{2}=\log \frac{1}{2} \log 2
$$

Units: $\mathcal{H}=\log _{2} 2=1$ bit or $\mathcal{H}=\ln 2$ bits $=1$ nat.

Examples

Yes	No
0.99	0.01

$$
\mathcal{H}=-0.99 \log 0.99-0.01 \log 0.01=0.08 \text { bits }
$$

$$
I(1: 2, \mathrm{Yes})=-\mathrm{P}\{\mathrm{Yes}\} \log (\mathrm{P}\{\mathrm{Yes}\})=0.0099
$$

Entropy vs Uncertainty

Equally likely two values

x_{1}	x_{2}
$1 / 2$	$1 / 2$

$$
\mathcal{H}=1 \quad \text { Shown before }
$$

Equally likely four values

x_{1}	x_{2}	x_{3}	x_{4}
$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$

$$
\mathcal{H}=\text { Who knows? }
$$

- $\mathcal{H}($ const $)=0$
- Increase of choices \Longrightarrow Increase of entropy
- Entropy increases within uncertainty

Entropy vs Uncertainty

Equally likely two values

x_{1}	x_{2}
$1 / 2$	$1 / 2$

$$
\mathcal{H}=1 \quad \text { Shown before }
$$

Equally likely four values

x_{1}	x_{2}	x_{3}	x_{4}
$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$

$$
\mathcal{H}=1
$$

- \mathcal{H} (const $)=0$
- Increase of choices \Longrightarrow Increase of entropy
- Entropy increases within uncertainty

Entropy vs Uncertainty

Equally likely two values

x_{1}	x_{2}
$1 / 2$	$1 / 2$

$$
\mathcal{H}=1 \quad \text { Shown before }
$$

Equally likely four values

x_{1}	x_{2}	x_{3}	x_{4}
$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$

$$
\mathcal{H}=-4 \times \frac{1}{4} \log \frac{1}{4}=2
$$

- $\mathcal{H}($ const $)=0$
- Increase of choices \Longrightarrow Increase of entropy
- Entropy increases within uncertainty

Entropy vs Uncertainty

Equally likely two values

x_{1}	x_{2}
$1 / 2$	$1 / 2$

$$
\mathcal{H}=1 \quad \text { Shown before }
$$

Equally likely four values

x_{1}	x_{2}	x_{3}	x_{4}
$1 / 4$	$1 / 4$	$1 / 4$	$1 / 4$

$$
\mathcal{H}=
$$

- \mathcal{H} (const) $=0$
- Increase of choices \Longrightarrow Increase of entropy
- Entropy increases within uncertainty

Mutual information

Information about X in Y

$$
X \xrightarrow{\text { noise, }} N
$$

H_{2} is always true, $\quad \mathrm{P}\left\{H_{2}\right\}=1$
H_{1} : the joint distribution (X, Y) is given by the probability density $f(x, y) ; X=x$.
Information when observe $Y=y$:

$$
I(1: 2, Y=y)=\log \mathrm{P}\left\{H_{1} \mid Y=y\right\}-\log \mathrm{P}\left\{H_{1}\right\}
$$

Compare with (discussed before)

$$
I(1: 2)=\log \left(\mathrm{P}\left\{H_{1} \mid x\right\}\right)-\log \left(\mathrm{P}\left\{H_{1}\right\}\right)
$$

Mutual information

Average information in Y about X

$$
\begin{array}{r}
\langle I(1: 2, Y=y)\rangle_{x, y}=\langle\log \mathrm{P}\{X=x \mid Y=y\}\rangle_{x, y}-\langle\log \mathrm{P}\{X=x\}\rangle_{x} \\
\langle\log \mathrm{P}\{X=x, Y=y\}\rangle_{x, y}-\langle\log \mathrm{P}\{Y=y\}\rangle_{y}-\langle\log \mathrm{P}\{X=x\}\rangle_{x} \\
=\iint f(x, y) \log f(x, y) d x d y-\int h(y) \log h(y) d y-\int g(x) \log g(x) d x= \\
-\mathcal{H}(X, Y)+\mathcal{H}(X)+\mathcal{H}(y)
\end{array}
$$

Capacity of the chanel

A noisy telegraph line, the dot or dash input reproduces itself in the output with probability of p :

$$
Y=X+N, \quad \mathrm{P}\{Y=X\}=p, \quad \mathrm{P}\{X=0\}=\alpha
$$

Mutual information $I_{\alpha}(X, Y)$ depends on α
Capacity is $\max _{\alpha} I_{\alpha}(X, Y)$
Simple algebra gives evidence that I_{α} attains its maximum at $\alpha=1 / 2$, the dashs and dots are equally likely. In this case

$$
\mathrm{P}\{X=0, Y=0\}=\mathrm{P}\{X=1, Y=1\}=p / 2
$$

$$
\mathrm{P}\{X=0, Y=1\}=\mathrm{P}\{X=1, Y=0\}=(1-p) / 2=(1-p) / 2
$$

$C=I=-\mathcal{H}(X, Y)+\mathcal{H}(X)+\mathcal{H}(Y)=p \log p+(1-p) \log (1-p)-4 \frac{1}{2} \log \frac{1}{2}$

Capacity of the chanel

A noisy telegraph line, the dot or dash input reproduces itself in the output with probability of p :

$$
Y=X+N, \quad \mathrm{P}\{Y=X\}=p, \quad \mathrm{P}\{X=0\}=\alpha
$$

Mutual information $I_{\alpha}(X, Y)$ depends on α
Capacity is $\max _{\alpha} I_{\alpha}(X, Y)$
Simple algebra gives evidence that I_{α} attains its maximum at $\alpha=1 / 2$, the dashs and dots are equally likely. In this case

$$
\begin{gathered}
\mathrm{P}\{X=0, Y=0\}=\mathrm{P}\{X=1, Y=1\}=p / 2 \\
\mathrm{P}\{X=0, Y=1\}=\mathrm{P}\{X=1, Y=0\}=(1-p) / 2=(1-p) / 2 \\
C=I=-\mathcal{H}(X, Y)+\mathcal{H}(X)+\mathcal{H}(Y)=p \log p+(1-p) \log (1-p)+2
\end{gathered}
$$

Capacity of the chanel

A noisy telegraph line, the dot or dash input reproduces itself in the output with probability of p :

$$
Y=X+N, \quad \mathrm{P}\{Y=X\}=p, \quad \mathrm{P}\{X=0\}=\alpha
$$

Mutual information $I_{\alpha}(X, Y)$ depends on α
Capacity is $\max _{\alpha} I_{\alpha}(X, Y)$
Simple algebra gives evidence that I_{α} attains its maximum at $\alpha=1 / 2$, the dashs and dots are equally likely. In this case

$$
\begin{gathered}
\mathrm{P}\{X=0, Y=0\}=\mathrm{P}\{X=1, Y=1\}=p / 2 \\
\mathrm{P}\{X=0, Y=1\}=\mathrm{P}\{X=1, Y=0\}=(1-p) / 2=(1-p) / 2
\end{gathered}
$$

If N is normal noise that capacity is attained for normal X

Capacity of the chanel

A noisy telegraph line, the dot or dash input reproduces itself in the output with probability of p :

$$
Y=X+N, \quad \mathrm{P}\{Y=X\}=p, \quad \mathrm{P}\{X=0\}=\alpha
$$

Mutual information $I_{\alpha}(X, Y)$ depends on α
Capacity is $\max _{\alpha} I_{\alpha}(X, Y)$
Simple algebra gives evidence that I_{α} attains its maximum at $\alpha=1 / 2$, the dashs and dots are equally likely. In this case

$$
\begin{gathered}
\mathrm{P}\{X=0, Y=0\}=\mathrm{P}\{X=1, Y=1\}=p / 2 \\
\mathrm{P}\{X=0, Y=1\}=\mathrm{P}\{X=1, Y=0\}=(1-p) / 2=(1-p) / 2
\end{gathered}
$$

If N is normal noise that capacity is attained for normal X
Can we get full information about X, if N is continious (say, normal) random variable?

Coding

Input $\stackrel{\text { coding }}{\Longrightarrow}$ Equally likely 0 s and $1 \mathrm{~s} \xrightarrow{\text { chanel }}$ Output
The graph is scanned into a 100×100 grid of pixels
The most of symbols are zeros, their fraction is 0.98 .
If we send symbols one by one, we have to send 1 bit information for each symbol, totally 10000 bits.
Coding: 0 represents the sequence $000,1001 \Longrightarrow 001$
Coding: 1010 represents the sequence $010,1011 \Longrightarrow 011$
Coding: 1100 represents the sequence $100,1101 \Longrightarrow 101$
Coding: 1110 represents the sequence $110,1111 \Longrightarrow 111$
Then approximately $0.98^{3}=0.94$ of three-pixel blocks are represented by a single $0,0.06$ of them are by four-element sequence. The average number of bits to transfer is

$$
(0.94 \times 1+0.06 \times 4) \times 10000 / 3=3934<10000
$$

Entropy of the normal distribution

$$
\begin{gathered}
\varphi(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}} .\right) \\
\mathcal{H}(x)=-\int_{-\infty}^{+\infty}\left(\log \left(\frac{1}{\sqrt{2 \pi} \sigma}\right)-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \varphi(x) d x= \\
\log (\sqrt{2 \pi})+\log \sigma+\frac{1}{\sigma^{2}} \underbrace{\int_{-\infty}^{+\infty} \frac{(x-\mu)^{2}}{2} \varphi(x) d x}_{\text {variance }}=\frac{1}{2} \log (2 \pi)+\log \sigma+1 / 2 .
\end{gathered}
$$

[^0]
Entropy of the normal distribution

$$
\varphi(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}} .\right)
$$

$$
\mathcal{H}(x)=-\int_{-\infty}^{+\infty}\left(\log \left(\frac{1}{\sqrt{2 \pi} \sigma}\right)-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \varphi(x) d x=
$$

$\log (\sqrt{2 \pi})+\log \sigma+\frac{1}{\sigma^{2}} \underbrace{\int_{-\infty}^{+\infty} \frac{(x-\mu)^{2}}{2} \varphi(x) d x}_{\text {variance }}=\frac{1}{2} \log (2 \pi)+\log \sigma+1 / 2$.

2-dimensional vector

$$
\mathcal{H}(X, Y)=\log (2 \pi)+\log \sigma_{x}+\log \sigma_{y}+\frac{1}{2} \log \left(1-\rho^{2}\right)+1
$$

Information, observing normal RV

$$
I(X, Y)=-\frac{1}{2}\left(\log \left(1-\rho^{2}\right)\right)
$$

Model

$$
Y=X+N, \quad \operatorname{Cov}(X, N)=0,(X, Y) \sim \text { normal, } \sigma_{x}, \sigma_{y}, \rho
$$

X is input, Y is output, N is noise; $\rho=\sigma_{x} / \sigma_{y}, \operatorname{Var} N=\nu^{2}$

$$
I(X, Y)=-\frac{1}{2} \log \left(1-\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}}\right)
$$

The amount of information (in bits) obtained from observation X

$$
I(X, Y)=\frac{1}{2} \log \left(1+\frac{\sigma_{x}^{2}}{\sigma_{y}^{2}-\sigma_{x}^{2}}\right)=\frac{1}{2} \log \left(1+\frac{\sigma_{x}^{2}}{\nu^{2}}\right) .
$$

Gain and loss

Decrease of uncertainty

Observe $X_{i}+N_{i}, \mathbf{E} N_{i}=0, m$ times and choose the mean of the observations as estimation of X,

$$
\begin{aligned}
& \operatorname{Var}\left(\frac{X_{1}+N_{1}+X_{2}+N_{2}+\ldots+X_{m}+N_{m}}{m}\right)= \\
& \frac{1}{m^{2}} \operatorname{Var}\left(X_{1}+N_{1}+\ldots+X_{m}+N_{m}\right)=\frac{\sigma_{x}^{2}+\sigma_{N}^{2}}{m}
\end{aligned}
$$

At cost κ for each bit of information

$$
\kappa m \frac{1}{2} \log \left(1+\frac{\sigma_{x}^{2}}{\sigma_{N}^{2}}\right)
$$

Economic behaviour

A decision maker is uncertain about some economic variable x. Observing $y=x+N$ as many times as she wishes she obtaines information I about x at a cost and chooses \tilde{x} based on this information:

$$
\begin{aligned}
& U(\tilde{x}, x) \rightarrow \max \\
& I \leqslant I^{*} \quad \text { information constraint }
\end{aligned}
$$

Optimization problem

Autoregression process

$$
\begin{gathered}
y_{t}=a y_{t-1}+\varepsilon_{t}, \quad\left(y_{t}, y_{t-1}\right) \sim N\left(\sigma_{t}^{2}, \sigma_{t-1}^{2}, \rho\right), \operatorname{Var}\left(\varepsilon_{t}\right)=\nu^{2} \\
\mathbf{C o v}\left(y_{t}, y_{t-1}\right)=a \sigma_{t-1}^{2}, \quad \rho=\frac{a \sigma_{t-1}}{\sigma_{t}} \\
I\left(y_{t}, y_{t-1}\right)=-\frac{1}{2} \log \left(1-\rho^{2}\right)=\frac{1}{2} \log \frac{a^{2} \sigma_{t-1}^{2}+\nu^{2}}{\nu^{2}}
\end{gathered}
$$

Minimization of losses, given an observation of y_{t}

$$
\begin{gathered}
\sum \beta^{t}\left(\mathbf{E}\left(y_{t}-x_{t}\right)^{2}+\frac{\kappa}{2} \log \frac{a^{2} \sigma_{t-1}^{2}+\nu^{2}}{\nu^{2}}\right) \xrightarrow{x_{t}} \min \\
\sum \beta^{t}\left(\sigma_{t}^{2}+\frac{\kappa}{2} \log \frac{a^{2} \sigma_{t-1}^{2}+\nu^{2}}{\nu^{2}}\right) \xrightarrow{x_{t}} \min
\end{gathered}
$$

Minimization of losses, given m_{t} observations of y_{t}

$$
\sum \beta^{t}\left(\sigma_{t}^{2} \quad+\kappa m_{t} \log \frac{a^{2} \sigma_{t-1}^{2}+\nu^{2}}{\nu^{2}}\right) \xrightarrow{m_{t}} \min
$$

Given yellow constants

Minimization of losses, given m_{t} observations of y_{t}

$$
\sum \beta^{t}\left(\frac{a^{2} \sigma_{t-1}^{2}+\nu^{2}}{m_{t}}+\kappa m_{t} \log \frac{a^{2} \sigma_{t-1}^{2}+\nu^{2}}{\nu^{2}}\right) \xrightarrow{m_{t}} \min
$$

Given yellow constants

Minimization of losses, given m_{t} observations of y_{t}

$$
\sum \beta^{t}\left(\frac{a^{2} \sigma_{t-1}^{2}+\nu^{2}}{m_{t}}+\kappa m_{t} \log \frac{a^{2} \sigma_{t-1}^{2}+\nu^{2}}{\nu^{2}}\right) \xrightarrow{m_{t}} \min
$$

School algebra

$$
\frac{A}{z}+B z \xrightarrow{z} \min
$$

Solution:

$$
\frac{A}{z^{*}}=B z^{*}, \quad z^{*}=\sqrt{A / B}
$$

Minimization of losses, given m_{t} observations of y_{t}

$$
\sum \beta^{t}\left(\frac{a^{2} \sigma_{t-1}^{2}+\nu^{2}}{m_{t}}+\kappa m_{t} \log \frac{a^{2} \sigma_{t-1}^{2}+\nu^{2}}{\nu^{2}}\right) \xrightarrow{m_{t}} \min
$$

Given yellow constants

$$
m_{t}=\sqrt{C / \kappa}
$$

Qualitative behaviour of the solution

$$
m_{t}=\sqrt{C / \kappa}
$$

- $\kappa \rightarrow 0$, then $m_{t} \rightarrow \infty$, information is cheap and therefore in use
- $\kappa \rightarrow \infty$, then $m_{t} \rightarrow 0$; if integer $m_{t}<1$, the information is not processed.
Let σ_{t-1} and ν be such that $m_{t}^{*}<1$ and $\sigma_{t}^{2}=a^{2} \sigma_{t-1}^{2}+\nu^{2}>\sigma_{t-1}^{2}$. Then the information is not processed, $x_{t}=a x_{t-1}$ and the variance increases. The first term $\left(x_{t}-y_{t}\right)^{2}$ in the objective is increasing in t, optimal (unconditional) solution m_{t}^{*} is increasing in σ_{t}. The choice x_{t} deviates from y_{t} more and more with t so that (since m_{t}^{*} increases) the optimal stratege at some moment t^{\prime} is to collect information.

Dixit-Stiglitz consumption I

$$
\begin{gathered}
U=\left(\int_{0}^{1} q^{1-\nu}(i) d i\right)^{1 /(1-\nu)} \longrightarrow \max \\
\int_{0}^{1} p(i) q(i)=I
\end{gathered}
$$

Solution

$$
\mathcal{L}=\left(\int_{0}^{1} q^{1-\nu}(i) d i\right)^{1 /(1-\nu)}-\lambda \int_{0}^{1} p(i) q(i)=I
$$

FOC:

$$
q(i)=\tilde{\lambda}^{-1 / \nu} p^{-1 / \nu}(i), \quad \tilde{\lambda}=\lambda U^{-\nu /(1-\nu)}
$$

Dixit-Stiglitz consumption II

Price index

Substitution of FOC into budget constraint:

$$
\tilde{\lambda}^{-1 / \nu} P^{-(1-\nu) / \nu}=I, \quad P=\left(\int_{0}^{1} p^{-(1-\nu) / \nu}(i) d i\right)^{-\nu /(1-\nu)}
$$

The Lagrange multiplier

$$
\tilde{\lambda}=I^{-\nu} P^{-(1-\nu)}
$$

Optimal consumption

$$
q(i)=I P^{(1-\nu) / \nu} p^{-1 / \nu}(i)
$$

Firms

Choose x_{t} for unknown q_{t} to get profit

$$
\pi_{t}= \begin{cases}p_{t} x_{t}-c q_{t}, & \text { if } x_{t}>q_{t} ; \\ p_{t} x_{t}-c x_{t}, & \text { if } x_{t}<q_{t}\end{cases}
$$

Expected profit for optimal $q_{t}=p_{t-1}^{-1 / \nu}$ at period t

$$
\begin{gathered}
\mathbf{E} \pi_{t}=\left(p_{t} x_{t}-c q_{t}\right) \mathrm{P}\left\{x_{t}>q_{t}\right\}+\left(p_{t} x_{t}-c x_{t}\right) \mathrm{P}\left\{x_{t}<q_{t}\right\}= \\
\left(p_{t} x_{t}-c p_{t-1}^{1 / \nu}\right)\left(1-\Phi\left(\frac{\log x_{t}-p_{t-1}^{-1 / \nu}}{\sigma_{t} \sqrt{m_{t}}}\right)\right)+\left(p_{t}-c\right) x_{t} \Phi\left(\frac{\log x_{t}-p_{t-1}^{-1 / \nu}}{\sigma_{t} \sqrt{m_{t}}}\right) \\
\quad-\text { info_cost }
\end{gathered}
$$

Φ is the normal distribution function

Maximization of profit

$$
\begin{aligned}
& \sum_{t=1}^{\infty}\left(\left(p_{t} x_{t}-c p_{t-1}^{1 / \nu}\right)\left(1-\Phi\left(\frac{\log x_{t}-p_{t-1}^{-1 / \nu}}{\sigma_{t} \sqrt{m_{t}}}\right)\right)+\right. \\
& \left.\quad\left(p_{t}-c\right) x_{t} \Phi\left(\frac{\log x_{t}-p_{t-1}^{-1 / \nu}}{\sigma_{t} \sqrt{m_{t}}}\right)\right)-\kappa m_{t} \frac{1}{2} \log \frac{\sigma_{t}^{2}}{\nu^{2}} \xrightarrow{x_{t}, p_{t}, m_{t}} \max
\end{aligned}
$$

subject to

$$
\begin{cases}\sigma_{t}^{2}=\left(\sigma_{t-1}^{2}+\nu^{2}\right) / m_{t}, & \text { if } m \geqslant 1 ; \\ \sigma_{t}^{2}=\sigma_{t-1}^{2}+\nu^{2}, & \text { if } m=0\end{cases}
$$

Solution

(1) $m_{t}=0$: price is not adjusted on $\left[t_{1}, t_{2}\right]$
(e) $m_{t}>1$: price is adjusted on $\left[t_{2}, t_{3}\right]$, and so on

Woodford, 2009

Model

- Cost of price adjustment
- Information cost
- Objective: given the distribution of uncertain price, set (probabilistic) strategy of price adjustment

Results

- Stationary distribution of prices (under optimal price review)
- The cost of the information in terms of the firms revenue per time unit.
- The average rate of price review

Optimal x_{t}, unconstrained case

$$
x_{t}=a x_{t-1} \theta+(1-\theta) y_{t}+\xi_{t}
$$

random variable ξ_{t} does not depend on x_{t}, x_{t-1}, y_{t}.

$$
\begin{gathered}
\operatorname{Var}\left(a x_{t-1} \theta+(1-\theta) y_{t}+\xi_{t}\right) \xrightarrow{\theta} \min \\
\sigma_{t}^{2} \theta^{2}+\sigma_{t-1}^{2}(1-\theta)^{2}+2 \rho \theta(1-\theta) \sigma_{t} \sigma_{t-1} \xrightarrow{\theta} \min \\
\theta^{*}=\frac{\sigma_{t}^{2}-\rho \sigma_{t-1} \sigma_{t}}{\sigma_{t-1}^{2}+\sigma_{t}^{2}-2 \rho \sigma_{t-1} \sigma_{t}}
\end{gathered}
$$

[^0]: 2-dimensional vector

