Monocentric City Model

Imperfect Markets, New Economic Geography and Spatial Economics Nizhnij Novgorod, 2012

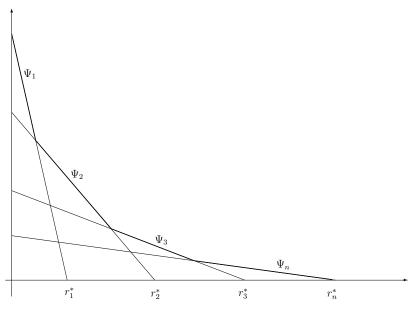
Outline

- 1 Модели моноцентрического города
 - Предтечи: Модель фон Тюнена (1826)
 - Базовая модель
- 2 Стратификация жителей городов
 - Почему в центре Детройта живут бедные, а в центре Парижа – богатые?
 - Время-Деньги!
 - Дела семейные
- Почему возникает СВD?

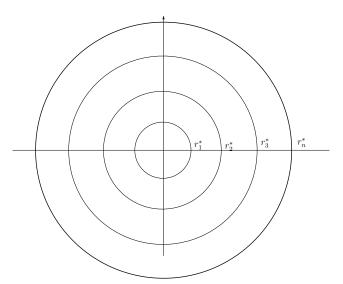
Модель фон Тюнена

- В чистом поле стоит единственный Город, его размеры пренебрежимо малы, но рынок (МР) есть только там
- Окружающее пространство земля используется для производства разнообразной сельхозпродукции 1,..., n
- Разные виды сельскохозяйственной деятельности характеризуются
 - различной производительностью земли a_1, \dots, a_n (a_i кол-во земли для производства единицы і-ой продукции)
 - различными удельными транспортными издержками t_1, \ldots, t_n (t_i стоимость транспортировки единицы і-ой продукции на единицу расстояния)
 - p_i цена единицы і-ой продукции в MP
- ullet Без ограничения общности $t_1/a_1 \geq t_2/a_2 \geq \ldots \geq t_n/a_n$

Цена арендатора и арендная плата


- $\Psi_i(r) = (p_i t_i r)/a_i$ цена арендатора (bid rent, максимальная цена, которую способен заплатить арендатор, производящий товар i в локации r)
- Равновесная арендная плата

$$R(r) = \max \left\{ \max_{i=1,\dots,n} \left\{ \Psi_i(r) \right\}, 0 \right\}$$


– верхняя огибающая линейных функций \Rightarrow кусочно-линейная

•
$$r_i^* = \frac{p_i/a_i - p_{i+1}/a_{i+1}}{t_i/a_i - t_{i+1}/a_{i+1}} \iff \Psi_i(r_i^*) = \Psi_{i+1}(r_i^*), i \leq n-1,$$

 $r_n^* = p_n/t_n, \ \Psi_n(r_n^*) = 0$

Структура ренты

Структура землепользования

Некоторые замечания и выводы

- Наличие центра торговли МР эндогенно формирует равновесную пространственную структуру экономики с торговыми потоками
- Не опровергает ли это теорему Старрета о невозможности?
- Отнюдь: здесь пространство неоднородно (MP точка сингулярности ;-)

Некоторые замечания и выводы

- Наличие центра торговли МР эндогенно формирует равновесную пространственную структуру экономики с торговыми потоками
- Не опровергает ли это теорему Старрета о невозможности?
- Отнюдь: здесь пространство неоднородно (MP точка сингулярности ;-)

- ullet Сельхозугодья o городские кварталы
- ullet Сельскохозяйственные культуры o жители города
- Рыночная площадь → Центральный Деловой Район (Central Business District, CBD)
- ullet Транспортные издержки o транспортные издержки проезда на работу (commuting costs)
- ullet Арендная плата за землю o арендная плата за жилье
- **Изучаемый вопрос:** Как будут расселяться жители вокруг единственного CBD?

- ullet Сельхозугодья o городские кварталы
- ullet Сельскохозяйственные культуры o жители города
- Рыночная площадь o Центральный Деловой Район (Central Business District, CBD)
- Транспортные издержки \rightarrow транспортные издержки проезда на работу (commuting costs)
- ullet Арендная плата за землю o арендная плата за жилье
- **Изучаемый вопрос:** Как будут расселяться жители вокруг единственного CBD?

- ullet Сельхозугодья o городские кварталы
- ullet Сельскохозяйственные культуры o жители города
- Рыночная площадь o Центральный Деловой Район (Central Business District, CBD)
- Транспортные издержки \rightarrow транспортные издержки проезда на работу (commuting costs)
- ullet Арендная плата за землю o арендная плата за жилье
- **Изучаемый вопрос:** Как будут расселяться жители вокруг единственного CBD?

- ullet Сельхозугодья o городские кварталы
- ullet Сельскохозяйственные культуры o жители города
- Рыночная площадь o Центральный Деловой Район (Central Business District, CBD)
- Транспортные издержки \rightarrow транспортные издержки проезда на работу (commuting costs)
- ullet Арендная плата за землю o арендная плата за жилье
- **Изучаемый вопрос:** Как будут расселяться жители вокруг единственного CBD?

- ullet Сельхозугодья o городские кварталы
- ullet Сельскохозяйственные культуры o жители города
- Рыночная площадь o Центральный Деловой Район (Central Business District, CBD)
- Транспортные издержки \rightarrow транспортные издержки проезда на работу (commuting costs)
- ullet Арендная плата за землю o арендная плата за жилье
- **Изучаемый вопрос:** Как будут расселяться жители вокруг единственного CBD?

- ullet Сельхозугодья o городские кварталы
- ullet Сельскохозяйственные культуры o жители города
- Рыночная площадь o Центральный Деловой Район (Central Business District, CBD)
- Транспортные издержки \rightarrow транспортные издержки проезда на работу (commuting costs)
- ullet Арендная плата за землю o арендная плата за жилье
- Изучаемый вопрос: Как будут расселяться жители вокруг единственного CBD?

Базовая модель городского землепользования

- Континуум [0, N] идентичных работников/потребителей, работают в CBD, получают доход Y.
- Потребляют: композитное потребительское благо z по цене 1 и арендуют жилье площадью s
- На расстоянии r от CBD транспортные расходы T(r), арендная плата R(r), где $0 \le T(0) < Y < T(\infty)$
- Задача потребителя

$$\max_{r,s,z} U(z,s) \text{ s.t. } z+s\cdot R(r) = Y-T(r)$$

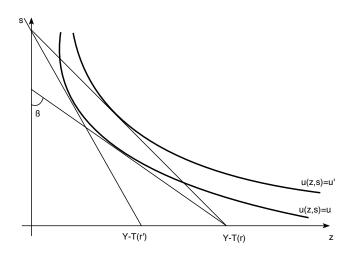
- В равновесии ни у кого нет стимула сменить место жительства (отсутствие зависти)
- ...т.е. все жители достигают одного и того же уровня полезности u^* вне зависимости от места проживания
- ullet уровень u^* определяется эндогенно

- В равновесии ни у кого нет стимула сменить место жительства (отсутствие зависти)
- ...т.е. все жители достигают одного и того же уровня полезности u^* вне зависимости от места проживания
- уровень и* определяется эндогенно

- В равновесии ни у кого нет стимула сменить место жительства (отсутствие зависти)
- ...т.е. все жители достигают одного и того же уровня полезности u^* вне зависимости от места проживания
- ullet уровень u^* определяется эндогенно

Bid Rent и Lot Size

- ullet Z(s,u) единственное решение уравнения U(z,s)=u
- Цена арендатора (bid rent), желающего извлечь уровень полезности u


$$\Psi(r,u) = \max_{s} \frac{Y - T(r) - Z(s,u)}{s}$$

• Спрос на жилье арендатора (lot size), желающего извлечь уровень полезности u

$$S(r,u) = \arg\max_{s} \frac{Y - T(r) - Z(s,u)}{s}$$

Немного графики

$$\begin{split} \mathsf{tg}\beta &= \Psi(r,u), \\ u' &> u \Rightarrow \Psi(r,u') < \Psi(r,u), \ S(r,u') > S(r,u), \\ r' &> r \Rightarrow \Psi(r',u) < \Psi(r,u), \ S(r',u) > S(r,u) \end{split}$$

Предложение

Функция цены арендатора $\Psi(r,u)$ является убывающей по r и u (пока не обратится в ноль), а функция спроса на жилье S(r,u) является возрастающей по r и u.

$$\begin{split} \frac{d\Psi}{dr} &= -\frac{T'(r)}{S(r,u)} < 0 & \frac{d\Psi}{du} = -\frac{1}{S(r,u)} \frac{\partial Z}{\partial u} < 0 \\ \frac{dS}{dr} &= -\frac{T'(r)}{S(r,u)} \cdot \frac{\partial \tilde{s}}{\partial R} > 0 & \frac{dS}{du} = \frac{d\Psi}{du} \cdot \frac{\partial \tilde{s}}{\partial R} > 0 \end{split}$$

где $\tilde{s}(R,I)$ – хиксовский спрос на жилье при цене (ренте) R и доходе I.

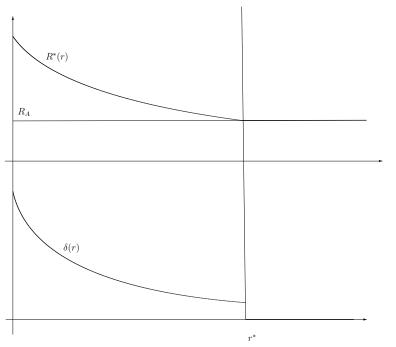
- Альтернативное использование земли сельское хозяйство, арендная плата $R_A \ge 0$
- Пусть r^* равновесный радиус города (при $r>r^*$ начинается село), u^* равновесный уровень полезности
- Условие 1. Город заканчивается там, где становится выгоднее заниматься сельским хозяйством $\Psi(r^*,u^*)=R_A$
- Условие 2. Всем хватило места:

$$\int\limits_{0}^{r^{*}}\frac{2\pi r}{S(r,u^{*})}\mathrm{d}r=N$$

• Равновесие определяется величинами u^* и r^* , удовлетворяющим соотношениям \uparrow существует и единственно (Fujita, 1989)

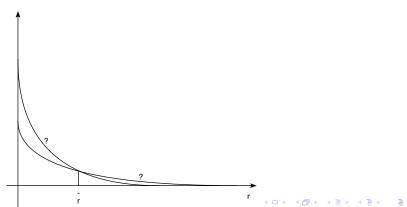
Свойства равновесия

• Равновесная рента


$$R^*(r) = \begin{cases} \Psi(r, u^*), & r \le r^* \\ R_A & r \ge r^* \end{cases}$$

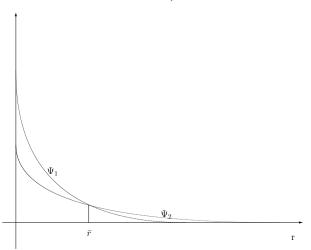
убывает по мере удаления от CBD

• Равновесная плотность населения


$$\delta(r) = \frac{1}{S(r, u^*)}$$

убывает по мере удаления от CBD

Неоднородность населения


- Пусть имеются две группы населения с разными функциями цены арендатора (bid-rents) , $\Psi_1(r,u_1^*) \neq \Psi_2(r,u_2^*)$
- ullet Если $\Psi_1(r,u_1^*)>\Psi_2(r,u_2^*)$ (или наоборот), то одна группа вытесняет другую
- Если же в точке \bar{r} : $\Psi_1(\bar{r},u_1^*)=\Psi_2(\bar{r},u_2^*)$ произойдет стратификация:

Кто – куда?

• Зависит от наклона кривых в точке пересечения \bar{r} :

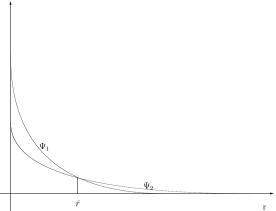
$$-rac{\mathrm{d}\Psi_1}{\mathrm{d}r}(ar{r})>-rac{\mathrm{d}\Psi_2}{\mathrm{d}r}(ar{r})\Rightarrow egin{cases} \Psi_1(r,u_1^*)>\Psi_2(r,u_2^*) & ext{при } rar{r} \end{cases}$$

Почему в центре Детройта живут бедные, а в центре Парижа — богатые?

''Детройт''

- ullet "Богатые" и "бедные": $Y_1 < Y_2 \Rightarrow u_1^* < u_2^*$
- ullet Жилье нормальное благо: $S_1(ar r,u_1^*)<ar S_2(ar r,u_2^*)$ \Rightarrow

$$-\frac{\mathsf{d}\Psi_1}{\mathsf{d}r}(\bar{r}) = \frac{T'(\bar{r})}{S_1(\bar{r},u_1^*)} > \frac{T'(\bar{r})}{S_2(\bar{r},u_2^*)} = -\frac{\mathsf{d}\Psi_2}{\mathsf{d}r}(\bar{r})$$


• т.е., бедные поселятся в центре, а богатые – в пригороде!

''Детройт''

- ullet "Богатые" и "бедные": $Y_1 < Y_2 \Rightarrow u_1^* < u_2^*$
- Жилье нормальное благо: $S_1(\bar{r}, u_1^*) < \bar{S_2}(\bar{r}, u_2^*) \Rightarrow$

$$-\frac{\mathsf{d}\Psi_1}{\mathsf{d}r}(\bar{r}) = \frac{T'(\bar{r})}{S_1(\bar{r},u_1^*)} > \frac{T'(\bar{r})}{S_2(\bar{r},u_2^*)} = -\frac{\mathsf{d}\Psi_2}{\mathsf{d}r}(\bar{r})$$

• т.е., бедные поселятся в центре, а богатые – в пригороде!

• Что может привлечь в центр?

- Достопримечательности! (amenities) локальные общественные блага, с убывающим по мере удаления от центра эффектом, $\frac{\mathrm{d}a}{\mathrm{d}r}(r)<0$, потребительская полезность U(z,s,a)
- Задача потребителя

$$\max_{r,s,z} U(z,s,a(r)) \text{ s.t. } z+s\cdot R(r) = Y-T(r)$$

Париж, Париж...

- Что может привлечь в центр?
- Достопримечательности! (amenities) локальные общественные блага, с убывающим по мере удаления от центра эффектом, $\frac{\mathrm{d}a}{\mathrm{d}r}(r)<0$, потребительская полезность U(z,s,a)
- Задача потребителя

$$\max_{r,s,z} U(z,s,a(r)) \text{ s.t. } z+s\cdot R(r) = Y-T(r)$$

Парижские тайны

Для двух классов с доходами $Y_1 < Y_2$

$$\frac{d\Psi_1}{dr} = \frac{1}{S_1(r)} \left[-T'(r) + \frac{\partial V}{\partial a} \Big|_1 \cdot \frac{da}{dr}(r) \right] < 0$$

$$\frac{d\Psi_2}{dr} = \frac{1}{S_2(r)} \left[-T'(r) + \frac{\partial V}{\partial a} \Big|_2 \cdot \frac{da}{dr}(r) \right] < 0$$

где V — непрямая функция полезности (в равновесии $V|_1(*)=u_1^*,\ V|_2(*)=u_2^*)$

Пусть $\Psi_1(ar r,u_1^*)=\Psi_2(ar r,u_2^*)$ в точке $ar r\geq 0$. Кто где поселится, зависит от знака

$$\Delta = -\frac{\mathsf{d}\Psi_1}{\mathsf{d}r}(\bar{r}) + \frac{\mathsf{d}\Psi_2}{\mathsf{d}r}(\bar{r}) \leq 0$$

Увидеть Париж и...

$$\Delta = \left(\frac{T'(\bar{r})}{S_1(\bar{r})} - \frac{T'(\bar{r})}{S_2(\bar{r})}\right) - \frac{\mathsf{d} a}{\mathsf{d} r}(\bar{r}) \left[\frac{\partial V}{\partial a}\bigg|_1 \cdot \frac{1}{S_1(\bar{r})} - \frac{\partial V}{\partial a}\bigg|_2 \cdot \frac{1}{S_2(\bar{r})}\right] \lesseqgtr 0$$

$$\frac{T'(\bar{r})}{S_1(\bar{r})} - \frac{T'(\bar{r})}{S_2(\bar{r})} > 0 - \mathsf{как} \; \mathsf{B} \; \mathsf{Детройте}$$

если

$$\left. \frac{\partial V}{\partial a} \right|_1 \cdot \frac{1}{S_1(\bar{r})} - \frac{\partial V}{\partial a} \right|_2 \cdot \frac{1}{S_2(\bar{r})} \ge 0$$
 — ещё детроистее

но если

$$\left. \frac{\partial V}{\partial a} \right|_1 \cdot \frac{1}{S_1(\bar{r})} - \left. \frac{\partial V}{\partial a} \right|_2 \cdot \frac{1}{S_2(\bar{r})} << 0$$
 — богатые поселятся в центре!

Время-Деньги!

Учет временн*ы*х транспортных издержек

- Два типа транспортных издержек денежные и временные: $a \ge 0$ и $b \ge 0$ (на единицу расстояния)
- Доходы: W ставка заработной платы, Y_N прочие (внезарплатные) доходы, \bar{t} полная величина ресурса времени
- Задача потребителя:

$$\max_{r,s,z} \ U(z,s,t_\ell) \text{ s.t. } z + s \cdot R(r) + ar = Y_N + W \cdot t_w \text{ in } t_\ell + t_w + br = \overline{t}$$

• Или

$$\max_{r,s,z} U(z,s,t_{\ell}) \text{ s.t. } z+s\cdot R(r)+W\cdot t_{\ell}=I(r),$$

- где $I(r) = Y_N + I_w(r) ar$, $I_w(r) = W \cdot (\bar{t} br)$
- ullet Полные транспортные издержки T(r) = ar + Wbr

Снова Bid Rent и Lot Size

- ullet $Z(s,t_\ell,u)$ единственное решение уравнения $U(z,s,t_\ell)=u$
- Цена арендатора (bid rent), желающего извлечь уровень полезности u

$$\Psi(r,u) = \max_{s,t_{\ell}} \frac{I(r) - Z(s,t_{\ell},u) - Wt_{\ell}}{s}$$

• Спрос на жилье арендатора (lot size), желающего извлечь уровень полезности u

$$S(r,u) = \arg\max_{s} \frac{I(r) - Z(s,t_{\ell},u) - Wt_{\ell}}{s} = \hat{s}(\Psi(r,u),W,I(r)),$$

где $\hat{s}(R,W,I)$ — маршаллианский спрос на землю (при земельной ренте R, цене досуга W и доходе I)

- Пусть две группы лиц различаются по внезарплатным доходам: $Y_{N1} < Y_{N2}$
- Как они будут расселяться в городе?

$$-\frac{\partial}{\partial Y_N} \left(\frac{\mathrm{d}\Psi}{\mathrm{d}r} \right) = \frac{\partial}{\partial Y_N} \left(\frac{T'(r)}{\hat{s}(\Psi(r,u),W,I(r))} \right) = -\frac{a + Wb}{\hat{s}^2} \frac{\partial \hat{s}}{\partial I} < 0$$

То есть

$$Y_{N1} < Y_{N2} \Rightarrow -\frac{d\Psi_1}{dr} > -\frac{d\Psi_2}{dr}$$

Вывод

Ближе к центру будут селиться жители с **меньшей** величиной внезарплатных доходов (при прочих равных условиях).

Гетерогенность по зарплате W

- ullet Пусть две группы лиц различаются по зарплате: $W_1 < W_2$
- Как они будут расселяться в городе?

$$-\frac{\partial}{\partial Y_N}\left(\frac{\mathrm{d}\Psi}{\mathrm{d}r}\right) = \left(\frac{1}{S}\frac{\partial T'}{\partial W} - \frac{T'}{S^2}\frac{\partial S}{\partial W}\right) = \frac{T'}{SW}\left(\frac{W}{T'}\frac{\partial T'}{\partial W} - \frac{W}{S}\frac{\partial S}{\partial W}\right) = \frac{T'}{SW}\left(\frac{W}{T'}\frac{\partial T'}{\partial W} - \frac{W}{T'}\frac{\partial S}{\partial W}\right) = \frac{T'}{SW}\left(\frac{W}{T'}\frac{\partial T'}{\partial W} - \frac{W}{T'}\frac{\partial T'}{\partial W}\right) = \frac{T'}{SW}\left(\frac{W}{T'}\frac{\partial T'}{\partial W}\right) = \frac$$

- где $\mathscr{E}_{T'/W}$ эластичность предельных транспортных издержек по зарплате, $\mathscr{E}_{S/W}$ эластичность спроса на землю по зарплате
- $\mathscr{E}_{T'/W} = \frac{bW}{a+bW}$, $\mathscr{E}_{S/W} = \eta \frac{I_w(r)}{I(r)} + \varepsilon$, где $\eta = \frac{\partial \hat{s}}{\partial I} \frac{I}{\hat{s}}$ эластичность маршаллианского спроса на землю по доходу, $\varepsilon = \frac{\partial \hat{s}}{\partial W} \frac{W}{\hat{s}}$ эластичность маршаллианского спроса на землю по цене времени досуга (которая равна ставке заработной платы
- $I(r) = Y_N + I_w(r) ar$, $I_w(r) = W \cdot (\bar{t} br)$

Чтоб ты жил на одну зарплату!

Вывод

Пусть доход работников состоит из одной зарплаты $(Y_N = 0)$ и отсутствуют денежные транспортные расходы (a = 0). Тогда:

- (i) если $\eta + \varepsilon > 1$, то ближе к центру будут селиться жители с меньшей величиной заработной платы
- (i) если $\eta + \varepsilon < 1$, то ближе к центру будут селиться жители с **большей** величиной заработной платы
- (i) если $\eta + \varepsilon = 1$, то уровень заработной платы не **оказывает** влияния на место поселения

Чтоб ты жил на одну зарплату! (продолжение)

При
$$\eta + \varepsilon < 1$$
 положим $\widehat{W} = rac{a}{b} \cdot rac{\eta + arepsilon}{1 - (\eta + arepsilon)}$

Вывод

Пусть доход работников состоит из одной зарплаты $(Y_N = 0)$, а денежные транспортные расходы положительны (a > 0). Тогда:

- (i) если $\eta + \varepsilon \geq 1$, то ближе к центру будут селиться жители с меньшей величиной заработной платы
- (i) если $0<\eta+\varepsilon<1$, то при $W<\widehat{W}$ рост заработной платы стимулирует удаление от центра, но если $W>\widehat{W}$, то рост заработной платы будет вызывать стремление селиться ближе к центру.

Дела семейные

Неоднородность состава семьи

- Состав семьи: d количество иждивенцев, n количество работников, h = n + d
- Задача семьи-потребителя

$$\max_{r,s,z,t_\ell} U(z,s,t_\ell;d,n)$$
 s.t. $z+s\cdot R(r)+n\cdot a\cdot r=Y_N+n\cdot W\cdot t_w$
 n $t_\ell+t_w+br=ar{t}$

• или

$$\max_{r,s,z,t_\ell}\ U(z,s,t_\ell;d,n)$$
 s.t. $z+s\cdot R(r)+n\cdot Wt_\ell=I(r,n),$ где $I(r,n)=Y_N+W\cdot (ar t-br)-n\cdot a\cdot r$

И еще раз Bid Rent

- $Z(s, t_{\ell}, u; d, n)$ единственное решение уравнения $U(z, s, t_{\ell}; d, n) = u$
- Цена арендатора (bid rent), желающего извлечь уровень полезности u

$$\Psi(r,u) = \max_{s,t_{\ell}} \frac{I(r) - Z(s,t_{\ell},u;d,n) - nWt_{\ell}}{s}$$

• Как будут расселяться семьи в зависимости от их состава?

Предложение

(i) чем больше иждивенцев в семье (при равном числе работников), тем дальше от центра они будут селиться (ii) если доход работников состоит только из зарплаты $(Y_N=0)$, тогда расселение будет зависеть от относительной доли работников в семье n/h: чем ниже эта доля, тем дальше от центра будет селиться семья (iii) если доход работников состоит только из зарплаты $(Y_N=0)$ и в семье нет иждивенцев (d=0), то размер семьи не влияет на выбор места поселения

Модель Мута

Модель со строй-индустрией

- Вместо жилплощади s потребляемое (композитное) благо: жилищные услуги q. $R_H(r)$ стоимость единицы жилищных услуг на расстоянии r от центра
- Задача потребителя

$$\max_{r,q,z} U(z,q) \text{ s.t. } z+q \cdot R_H(r) = Y-T(r)$$

• Задача строительной фирмы (индустрии) с неоклассической производственной функцией F(K,L)

$$\max_{L,K} R_H(r) \cdot F(L,K) - R(r)L - K$$

где R(r) – земельная рента, капитал абсолютно мобилен и его цена нормализована к единице.

Редукция

• Пусть

$$s = \frac{q}{F(L,K)}L, \ k = \frac{q}{F(L,K)}K \ \Rightarrow q = F(s,k)$$

• Условие нулевой прибыльности

$$R_H(r) \cdot F(L,K) - R(r)L - K = 0 \Rightarrow R_H(r) = \frac{R(r)s}{q} + \frac{k}{q}$$

• Эквивалентная задача потребителя

$$\max_{r,s,z,k} U(z,F(s,k)) \text{ s.t. } z+k+s\cdot R(r) = Y-T(r)$$

Bid Housing and Land Rents

ullet Пусть Z(q,u) — единственное решение U(z,q)=u, тогда

$$\Psi_H(r,u) = \max_q \frac{Y - T(r) - Z(q,u)}{q}$$

Предложение

Функция $\Psi_H(r,u)$ является убывающей по r и u:

$$\frac{d\Psi_H}{dr} = -\frac{T'(r)}{Q(r,u)} < 0 \quad \frac{d\Psi_H}{du} = -\frac{1}{Q(r,u)} \frac{\partial Z}{\partial u} < 0$$

• Земельная рента

$$\Psi_L(r; R_H(r)) = \max_{L,K} \frac{R_H(r)F(L,K) - K}{L} = \max_{s,k} \frac{R_H(r)F(s,k) - k}{s}$$

Bid Rent

ullet В равновесии выполнено $R_H(r) = \Psi_H(r,u)$, положим

$$\Psi(r,u) = \Psi_L(r; \Psi_H(r,u)) = \max_{s,k} \frac{Y - T(r) - Z(F(s,k),u) - k}{s}$$

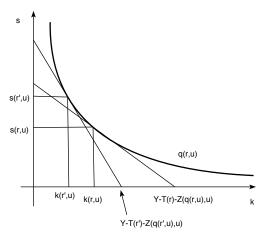
максимальная земельная рента, на которую согласится фирма при ожидаемой полезности домохозяйств u.

- Равновесные значения u^* и r^* определяются из условий

$$\Psi(r^*, u^*) = R_A, \int_0^{r^*} \frac{2\pi r}{s(r, u^*)} dr = N$$

Предложение

Равновесие существует и единственно


"Капиталооснащенность" Земли

Пусть
$$s(r) = s(r, u^*), k(r) = k(r, u^*)$$
, рассмотрим $v(r) = \frac{k(r)}{s(r)}$ – использование капитала на единицу площади земли $\left(s = \frac{q}{F(L,K)}L, \ k = \frac{q}{F(L,K)}K\right)$

Предложение

Капиталооснащенность земли $\frac{k(r)}{s(r)}$ является убывающей функцией относительно r

Иллюстрация

Если капиталооснащенность является отражением этажности, то из утверждения следует, что этажность в городе уменьшается от центра к окраине.

Заключение

- Модели моноцентрического города (т.е., города с единственным местом занятости, расположенным в центре) достаточно хорошо описывают наблюдаемые явления
- Предположение о моноцентричности не является универсальным, крупные города, как правило, полицентричны
- Существование CBD постулируется, а не является естественным исходом формирования

Хватит, или еще?

"Здесь Город будет заложен!"

- Выбор конкретного места может быть обусловлен политическим/религиозными/географическими причинами
- Но каковы ЭКОНОМИЧЕСКИЕ причины образования агломераций?
- То есть, почему экономически выгодно собираться вместе людям и фирмам?

Триада: Sharing-Matching-Learning

Положительные внешние влияния концентрации.

- Sharing (взаимное участие) технологические выгоды для фирм от близости друг к другу
- Matching (востребованность) выгоды для работников (и фирм) от более лучшей сочетаемости трудовых навыков и характера работы
- Learning (взаимное обучение) информационные выгоды для фирм и работников благодаря "перетоку" знаний и умений от более производительных/умелых к желающим повысить свой уровень

Модель взаимодействия потребителей

- Континуум идентичных потребителей/работников [0,N] с доходом Y расселяются в однородном пространстве $X=(-\infty,\infty)$
- ullet Аграрная земельная рента $R_A>0$
- ullet Задача потребителя в локации $x \in X$

$$\max_{x,s,z} u(z,s) + I_x \text{ s.t. } z + s \cdot R(x) = Y - T(x)$$

где I_x – поле взаимодействия, T(x) – издержки, связанные со взаимодействием, R(x) – арендная плата в локации x

• T(x) и R(x) формируются эндогенно

Упрощающие предположения

- $I_x \equiv I$, $u(z,x) = z + \alpha \ln s$, расходы на взаимодействие транспортные расходы, линейные по расстоянию, t расходы на единицу
- n(x) эндогенная плотность расселения, без ограничения общности supp $n(x) \subset [-b,b]$ (ввиду ограниченности бюджета)
- Тогда $T(x) = \int_{-b}^{b} t \cdot |x y| n(y) dy$
- В равновесии достигается единый уровень полезности U^* , поэтому цена арендатора

$$\Psi(x, U^*) = \max_{s} \frac{Y - U^* + I + \alpha \ln s - T(x)}{s}$$

Решение-1

• Условие первого порядка $\zeta + \alpha \ln s - T(x) = 0$, где $\zeta = Y - U^* + I - \alpha$ — эндогенная констатнта, как и U^* , отсюда

$$s^*(x) = e^{\frac{-\zeta + T(x)}{\alpha}},$$

плотность населения

$$n^*(x) = \frac{1}{s^*(x)} = e^{\frac{\zeta - T(x)}{\alpha}}$$

подставим $s^*(x)$ в выражение цены арендатора, получим

$$\Psi(x,U^*) = \frac{\alpha}{s^*(x)} = \alpha n^*(x)$$

Решение-2

• Дифференцируя дважды по х

$$T(x) = \int_{-b}^{b} t \cdot |x - y| dy = \int_{-b}^{x} t \cdot (x - y) n(y) dy + \int_{x}^{b} t \cdot (y - x) n(y) dy$$

получаем
$$\frac{\mathsf{d}^2 T}{\mathsf{d} x^2} = 2t \cdot n^*(x) = 2t \cdot e^{\frac{\zeta - T(x)}{\alpha}}$$

• Решаем дифур

$$T(x)=-lpha\ln\left[rac{lpha}{t}e^{-rac{\zeta}{lpha}}rac{k^2e^{k|x|}}{(1+e^{k|x|})^2}
ight],\ k$$
 — константа интегрирования

• Отсюда

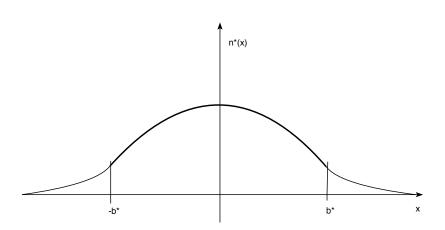
$$n^*(x) = \frac{\alpha}{t} \frac{k^2 e^{k|x|}}{(1 + e^{k|x|})^2}$$

Решение-3 (граничные условия)

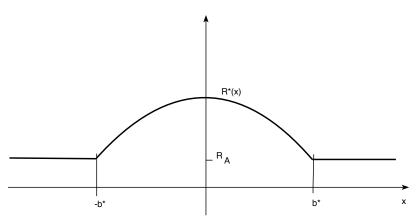
• На эндогенной границе города b^* арендная плата равна сельскохозяйственной $\Psi(b^*,U^*)=R_A$, поэтому

$$\frac{R_A}{\alpha} = n^*(b^*) = \frac{\alpha}{t} \frac{k^2 e^{kb^*}}{(1 + e^{kb^*})^2}$$

• Совокупное население


$$N = 2 \int_{0}^{b^{*}} n^{*}(x) dx = \frac{\alpha}{t} k \frac{e^{kb^{*}} - 1}{e^{kb^{*}} + 1}$$

Решение-4


$$ullet$$
 Решая систему, получим $k=rac{1}{lpha}\sqrt{t\cdot\left(rac{tN^2}{4}+4R_A
ight)}$

$$ullet$$
 $b^*=rac{1}{k}\ln\left(rac{2lpha k+tN}{2lpha k-tN}
ight)$ — эндогенный размер города

График плотности

График ренты

$$R^*(x) = lpha n^*(x)$$
 для $x \in [-b^*, b^*]$

Модель взаимодействия фирм

- Континуум [0,M] идентичных фирм, выпуск каждой Q продается на конкурентном рынке по цене 1
- Взаимодействие поездки друг к другу, издержки взаимодействия

$$T(x) = \int_{-b}^{b} t|x - y|m(y)dy$$

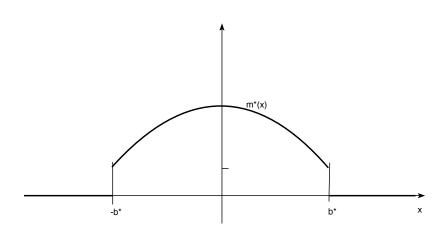
где t — удельные транспортные издержки, m(y) — эндогенная плотность распределения фирм (например, если фирма занимает один этаж, то m(y) — количество этажей в доме в точке y)

• Прибыль $\pi(x) = Q - T(x) - R(x)$, где R(x) – стоимость аренды офиса, альтернативная рента (например, жилье) $R_A > 0$. В равновесии $\pi(x) \equiv \pi^*$

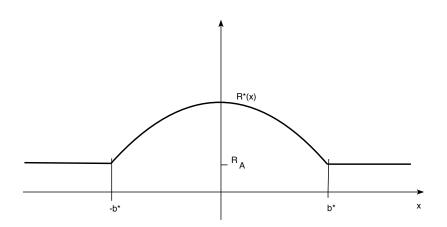
Строительный сектор

- Прибыль $\pi_c(x) = R(x) \cdot s(x) [s(x)]^2 R(x)$, где s(x) количество этажей (фирм-арендаторов)
- Из условия первого порядка $s^*(x) = R(x)/2$,
- Равновесие на рынке офисов $s^*(x) = m(x)$ т.е. $2m(x) = R(x) = Q T(x) \pi^*$
- ullet Отсюда $rac{{\mathsf d}^2 T}{{\mathsf d} x^2} = -2rac{{\mathsf d}^2 m}{{\mathsf d} x^2}$
- С другой стороны,

$$\frac{\mathrm{d}^2 T}{\mathrm{d}x^2} = \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(\int_{-b}^{b} t |x - y| m(y) \mathrm{d}y \right) = 2t \cdot m(x)$$


Решение

- Решаем дифур $\frac{\mathrm{d}^2 m}{\mathrm{d}x^2} + t \cdot m(x) = 0$: $m^*(x) = k \cdot \cos\left(\sqrt{t} \cdot |x|\right)$, k константа интегрирования
- ullet Граничные условия $R_{\mathcal{A}} = R^*(b) = 2k \cdot \cos\left(\sqrt{t} \cdot b\right)$
- Все фирмы нашли место для офиса


$$M = 2 \int_{0}^{b} m(x) dx = 2k\sqrt{t} \cdot \sin\left(\sqrt{t} \cdot b\right)$$

$$ullet$$
 Отсюда $b^* = rac{1}{\sqrt{t}} \mathrm{arctg}\left(rac{M}{R_A}
ight)$, $k = rac{R_A}{2\cos\left(\mathrm{arctg}\left(rac{M}{R_A}
ight)
ight)}$

График плотности фирм

Стоимость аренды офиса

- Как фирмы, так и работники стремятся к концентрации в CBD
- поскольку это отвечает их интересам благодаря положительным внешним влияниям
- пока они превышают отрицательные внешние влияния (издержки скученности)
- а если скученность слишком велика?
- Смотрите продолжение через неделю: "Эндогенная полицентрия городов"

- Как фирмы, так и работники стремятся к концентрации в CBD
- поскольку это отвечает их интересам благодаря положительным внешним влияниям
- пока они превышают отрицательные внешние влияния (издержки скученности)
- а если скученность слишком велика?
- Смотрите продолжение через неделю: "Эндогенная полицентрия городов"

- Как фирмы, так и работники стремятся к концентрации в CBD
- поскольку это отвечает их интересам благодаря положительным внешним влияниям
- пока они превышают отрицательные внешние влияния (издержки скученности)
- а если скученность слишком велика?
- Смотрите продолжение через неделю: "Эндогенная полицентрия городов"

- Как фирмы, так и работники стремятся к концентрации в CBD
- поскольку это отвечает их интересам благодаря положительным внешним влияниям
- пока они превышают отрицательные внешние влияния (издержки скученности)
- а если скученность слишком велика?
- Смотрите продолжение через неделю: "Эндогенная полицентрия городов"

- Как фирмы, так и работники стремятся к концентрации в CBD
- поскольку это отвечает их интересам благодаря положительным внешним влияниям
- пока они превышают отрицательные внешние влияния (издержки скученности)
- а если скученность слишком велика?
- Смотрите продолжение через неделю: "Эндогенная полицентрия городов"