On Invisible Trade Relations between Mesopotamian Cities during the Third Millennium B.C.

A.Bossuyt, L.Broze, V.Ginsburgh (The Professional Geographer, Volume 53, Issue 3, 2001)

Presentation by I.Trubekhina 2012

Main ideas

- Clay tablets as traces of trade links and transactions between cities
- Estimation of gravity model based on clay tablets

Mesopotamia formed a strongly integrated market

Geographic, Historic, and Economic Background

- Mesopotamia ("between the rivers"): The Euphrates and The Tigris
- 4 millennium B.C. emergence of Uruk civilization and the first sighs of urbanization (Sumer, Babylonia, ...)
- Sargon empire (2370-2230 B.C.), City-states and anarchy, dominance of Ur – third dynasty (2100-2003 B.C.)

Information

Problems:

Non-systematic archeological excavations
Regular floods in the delta cities

Translation of tablets

<u>Content of tablets:</u> Records of transactions, contracts and inventories (bookkeepers of the temple or the palace, private merchants)

Goods

- Copper (Anatolia), tin (Persia), silver (Armenia), gold (mines between India and Egypt), wood (Lebanon), stone (Zargos), luxuries - precious stones, oils, slaves
- Textiles (wool), leather, fish, grain
- Bronze (invented at the end of 4 m.), potter's wheel->earthware

Transportation

- Boats and donkeys
- Two main roads (the southern delta-the west):
- 1. Sippar Mari (desert) Qatna and the Phoenician ports of Mediterranean Sea
- 2. Sippar (the Tigris) Nineveh Nagar Harran

The Problem and the Database

30 cities (active during the last centuries of the 3rd millennium)

- different regions (the northwest, the southern delta, the center along the Tigris)
- known precise location (distance factor of intensity of trading relations)
- Proxying unknown trade flows by number of times each city is quoted in the documents discovered in every other city

Documents

4 types of activities:

- Letters exchanged between the king and his diplomats or other monarchs
- Texts related to the administration of the city itself (population censuses, tax collections, stocks of raw materials and agricultural produce)
- Texts dealing with the administrative management of the provinces (letters from the king to his agents and administrators)
- Texts concerned with the administration of the king's palace (including inventories of cellars and storerooms)

Compendia: number of times a city is mentioned in the archives of the other cities

Subperiods and distances

- •To avoid "creating" non-existent trade relations two subperiods were distinguished:
- 1.Pre-Sargonic
- 2.The Third Dynasty of Ur
- •Distances in days of travel (walking; sailing): plausible routs, velocity (25; 50 km/day)

Excavations

 Intensity with which excavations were carried out in each city (through/superficial)

 Accessibility of the documents (how deep did excavations have to go in order to find documents related to the 3rd millennium)

Data overview (1)

- 1. Cities quoted (30), cities where tablets were found (11)
- 2. Period (1, 2)
- 3. Location (North, South, Center)
- 4. Area (Hectares): Nuzi 4, Uruk 400 (s_i)
- 5. Sited in Delta: yes=1, no=0
- 6. Housed Harbor: yes=1, no=0 (p_i)
- 7. Located on River: yes=1, no=0 (r_i)

Data overview (2)

8. Excavations:

•Intensity (1-high, 2-medium, 3-low) - I_i

•Accessibility (1-high, 2-low) - a_i

9. Citations:

•Number: Tutur – 1, Nippur – 625 (cities quoted);

Assur - 1, Ur - 765 (cities where tablets were found)

•Self-cites (citations of a city found in the city itself): Assur – 1, Lagash – 469

Objective: to check whether intercity trades (citations) can be explained by a certain number of factors

Model

 Classical gravity model, based on Newton's gravity law: The attraction force x_{ij} between two bodies i and j is directly related to m_i, m_j (masses) and inversely related to (square of the) distance d_{ii}

$$x_{ij} = \alpha_0 m_i m_j d_{ij}^{-2}$$

• In logarithmic form:

 X_{ij}

 $\log x_{ij} = \log \alpha_0 + \alpha_1 \log m_i + \alpha_2 \log m_j + \alpha_3 \log d_{ij} + u_{ij}$

 α_i - Estimated parameters

 u_{ij} - Error, usual assumptions

Model

 $\log x_{ij} = \log \alpha_0 + \alpha_1 \log m_i + \alpha_2 \log m_j + \alpha_3 \log d_{ij} + u_{ij}$

The trade flow from j to i can be explained by wealth in both regions and (negatively) by some measure of the distance that separates them

- • x_{ij} trade flow (exports) from *j* to *i*, $x_{ij}=x_{jj}=0$
- • m_{i} , m_{j} wealth, income
- • d_{ij} "distance" between *i* and *j*
- • m_i total exports of i
- • m_j total imports of j

$$m_i = \sum_k x_{ik}$$
$$m_j = \sum_k x_{kj}$$

Criticism

- No other spatial patterns besides distance
- Hierarchical interactions

Solution:

- Estimating separate equation for each origin
- Introducing for each destination a variable that measures its accessibility with respect to all alternative destinations

Reasons for not implementing:

- Number of observations
- Missing observations (no excavations, lost,...)

Specification

 $\log x_{ij} = \log \alpha_0 + \alpha_1 \log m_i + \alpha_2 \log m_j + \alpha_3 \log d_{ij} + \alpha_4 \log x_{ii} + \alpha_{i+1} \log x_{i$

$$+ \alpha_{5} r_{i} + \alpha_{6} I_{i} + \alpha_{7} a_{i} + \alpha_{8} p_{j} + \alpha_{9} s_{i} + u_{ij}$$

- x_{ij} the number of times city j is cited in the archives found in city i
- *m_i* importance of "importing" city, the total number of citations found there (including/excluding self-citations)
- *m_j* importance of "exporting" city, the number of citations of *j*, found elsewhere

Specification

 $\log x_{ij} = \log \alpha_0 + \alpha_1 \log m_i + \alpha_2 \log m_j + \alpha_3 \log d_{ij} + \alpha_4 \log x_{ii} + \alpha_{i+1} \log x_{i} + \alpha_{i+1} \log x_{i} + \alpha_{i+1} \log x_{ii}$

$$+ \alpha_{5} r_{i} + \alpha_{6} I_{i} + \alpha_{7} a_{i} + \alpha_{8} p_{j} + \alpha_{9} s_{i} + u_{ij}$$

- r_i dummy variable (river), negative effect of floods
- *I_i* dummy variable (Intensity), expected sign is positive
- *a_i* dummy variable (Accessibility), expected sign is positive
- *p_j* dummy variable (housed a harbor), expected sign is positive
- s_i area of the city, expected sign is positive (larger cities->larger libraries) or negative (likelihood of finding tablets is inversely related to the area of the city)

Estimation

- OLS biased results: missing x_{ij} (no intensive excavations in city *i*, no tablets found) censored data
- T_i is not observed If $T_i > T$ (threshold), then $x_{ij} > 0$, otherwise $x_{ij} = 0$

$$T_i = \delta_0 + \delta_1 r_i + \delta_2 I_i + \delta_3 a_i + \delta_4 s_i + v_i$$

Final model

$$\log x_{ij} = \log \alpha_0 + \alpha_1 \log m_i + \alpha_2 \log m_j + \alpha_3 \log d_{ij} + \alpha_4 \log x_{ii} + \alpha_5 r_i + \alpha_6 I_i + \alpha_7 a_i + \alpha_8 p_j + \alpha_9 s_i + u_{ij}$$
(1)
$$T_i = \delta_0 + \delta_1 r_i + \delta_2 I_i + \delta_3 a_i + \delta_4 s_i + v_i$$
(2)

• X_{ij} is observed only if $T_i > T$, T_i and T are unobserved • (U_{ij}, v_i) - independently normally distributed with zero means, variances - σ_u^2, σ_v^2 , covariance - $\rho \sigma_u \sigma_v$

One of variables in (2) should be absent in (1) for identification
Estimation method: maximum likelihood

Results

- S_i excluded from (1)
- Likelihood ratio test (p-value=0.000), pseudo-R² (1.000)– very good
- Expected signs of coefficients
- Some coefficients are not significantly different from 0 (self-citations, river, intensity of excavations)

Eq.		Coefficient	St. Error
(1)	Intercept (α_0)	-2.9292*	0.6005
	Importance of city $\underline{i}(\alpha_1)$	0.3483*	0.0672
	Importance of city j (α_2)	0.7897*	0.0431
	Distance between cities j and $\underline{i}(\alpha_3)$	-0.2062*	0.0546
	Self – citations in city $\underline{i}(\alpha_4)$	0.1178	0.0848
	River in city $\underline{i}(\alpha_5)$	-0.4186	0.2590
	Intensity of excavations in city $\underline{i}(\alpha_6)$	0.2388	0.2314
	Accessibility of remains in city $\underline{i}(\alpha_7)$	0.4204*	0.2191
	Port in city j (α_8)	0.4468*	0.2196
(2)	Intercept (δ_0)	-1.0008*	0.3248
	River in city $\underline{i}(\delta_1)$	0.1309	0.2924
	Intensity of excavations in city $\underline{i}(\delta_2)$	0.4146*	0.2111
	Accessibility of remains in city $\underline{i}(\delta_3)$	0.2978	0.2729
	Area in city $\mathbf{i}(\delta_4)$	0.0049*	0.0008

Results

- Distance was less of a problem: 0.2 (0.7-0.8 in international trade, intercity travels today) -> strongly integrated market
 Reason: lack of raw materials (timber, minerals) ->
 - import from other regions (export: textile, grain)
- Total number of citations positive (city *j* larger effect)
- Accessibility of remains, port positive effect

Thank you for your attention!