Multi-plant firms and firms investing in productivity as limiting cases of multi-product firms

Ph.Ushchev

7 December 2012

3.5

Consider once more a familiar situation...

• There is **one sector**

- Within this sector, a **continuum** of firms of measure *N* operates
- Product is assumed to be horizontally differentiated across firms as well as within firms' product lines
- Each firm *j* chooses:
 - its **continuous** product line of size *n_j*
 - its production plan $\mathbf{q}_j : [0, n_j] \to \mathbb{R}_+$
- Each variety is produced by a single firm
- Question of interest: comparative statics of product ranges and the number of firms w.r.t the market size

A 3 b

2 Supply side and equilibrium conditions

3 Some limiting cases

문 ▶ ★ 문 ▶

Consumers

- The economy is endowed with *L* identical consumers, each of whom
 - inelastically supplies one unit of labour
 - maximizes her utility function

$$\mathscr{U} = \int_{0}^{N} U\left(\int_{0}^{n_{j}} u(x_{ij}) \, di\right) \, dj$$

• and faces the budget constraint

$$\int_{0}^{N} \int_{0}^{n_j} p_{ij} x_{ij} \, di \, dj \le 1$$

Utilities

- We call *U* the **upper-tier utility function**, whereas *u* is the **lower-tier utility function**
- The functions *u*, *U* are assumed to be:
 - increasing
 - thrice differentiable
 - such that \mathscr{U} is convex
- Also, *u* is convex, whereas *U* can be concave

Two-tier utility and cannibalization Supply side and equilibrium conditions Some limiting cases

Product differentiation

The two-tier utility function accounts for **two levels o**f product differentiation:

- the inter-brand differentiation;
- the intra-brand differentiation.

▶ < ∃ ▶

-

э

Two-tier utility functions in the literature

- Nested CES: Alanson, Montagna (2005), Arkolakis, Muendler (2011), Shimomura, Thisse (2012);
- Nested logit: Anderson, de Palma (2006);
- Nested linear-quadratic utility: Eckel, Neary (2010);
- Not so many examples, actually...

- E - N

Two-tier utility and cannibalization Supply side and equilibrium conditions Some limiting cases

What does the approach yield?

- Allows to rigorously define cannibalization effect and to find exact conditions when it takes place;
- Allows to obtain models underlying different stories as limiting cases of the general model.

Inverse demand functions

• Solving the consumer's problem yields inverse demand functions:

$$p_{ij} = rac{u'(x_{ij})}{\lambda} U'\left(\int\limits_{0}^{n_j} u(x_{kj}) dk
ight)$$

- λ is the marginal utility of income
- Because there is a continuum of firms, the individual influence of each firm on λ is **negligible**

< ∃ >

Useful notation

Elasticity of utility w.r.t. the individual consumption level:

$$\varepsilon_u(x) \equiv \frac{xu'(x)}{u(x)}$$

The **intra-brand relative love for variety** (the curvature of the lower-tier utility function):

$$r_u(x) \equiv -\frac{xu''(x)}{u'(x)}$$

The **inter-brand relative love for variety** (the curvature of the upper-tier utility function):

$$R_U(X) \equiv -\frac{X U''(X)}{U'(X)}.$$

< ∃ >

Cannibalization effect

Assume that firm *j* charges the same price p_j for all varieties it produces.

Inverse demands for all varieties supplied by firm j then become:

$$p_j = \frac{U'(n_j u(x_j))}{\lambda} u'(x_j).$$

Definition. We say that weak cannibalization effect takes place if

$$\frac{\partial x_j}{\partial n_j} < 0.$$

Intuition

If a firm expands the product range holding all prices fixed and the same, then, other things equal, sales of each incumbent variety fall.

Cannibalization effect

Assume that firm *j* charges the same price p_j for all varieties it produces.

Inverse demands for all varieties supplied by firm j then become:

$$p_j = \frac{U'(n_j u(x_j))}{\lambda} u'(x_j).$$

Definition. We say that weak cannibalization effect takes place if

$$\frac{\partial x_j}{\partial n_j} < 0.$$

Intuition

If a firm expands the product range holding all prices fixed and the same, then, other things equal, sales of each incumbent variety fall.

When does WCE occur?

Proposition 1. If the upper-tier utility U is concave, per-variety cannibalization effect always takes place.

Proof. Direct calculation yields:

$$\frac{\partial x_j}{\partial n_j} \frac{n_j}{x_j} = \frac{-R_U}{r_u + R_U \varepsilon_u}$$

Remark. Further on, we will see, that in equilibrium $r_u + \varepsilon_u R_U > 0$ should always hold. Thus, if we consider only firms' behavior in the neighbourhood of equilibrium, Proposition 1 yields necessary and sufficient condition for cannibalization.

ヨトィヨト

Producers

- Each firm incurs:
 - a fixed cost F
 - a variable cost $V(\mathbf{q}, n)$
- The variable cost functions *V* is convex in **q** and satisfies the **symmetry** condition:

$$V(\mathbf{q}_1, n) = V(\mathbf{q}_2, n) \quad \forall n,$$

where \mathbf{q}_2 can be obtained from \mathbf{q}_1 by a renumbering of varieties.

Profit maximization

Because of symmetry, we can pose the firm's problem as follows:

$$\max \pi(y, n) = \frac{1}{\lambda} u'\left(\frac{y}{nL}\right) U'(n u(x)) y - F - v(y, n),$$

where

- $y = \int_0^n q_i di$ is firm's total output
- *v* is the symmetrized cost function:

$$v(y, n) = V(\mathbf{q}, n)|_{\mathbf{q} \equiv y/n}$$

We assume v to be increasing, twice continously differentiable and convex

Two examples of cost functions

• Additively separable production costs + product line-specific fixed costs:

$$V(\mathbf{q},n) \equiv \int_{0}^{n} v(q_i) di + \phi n$$

• Constant MPC, decreasing with respect to the scope + + product line-specific fixed costs:

$$V(\mathbf{q},n)=c(n)\int_{0}^{n}q_{i}di+\phi n$$

물 에 에 물 어

Equilibrium conditions

Pricing:

$$\rho = \frac{v_y}{1 - (r_u + R_U \varepsilon_u)} \quad (\Rightarrow r_u + R_U \varepsilon_u > 0 \text{ in equilibrium})$$

Free entry:

$$py = F + v(y, n)$$

Labour balance:

$$L = N(F + v(y, n))$$

The "unit elasticity" condition (follows from zero profit and producer's FOC):

$$\frac{v_y y}{F + v(y, n)} + \frac{v_n n}{F + v(y, n)} = 1 - R_U$$

▶ < ∃ >

Reduced equilibrium conditions

The system of equilibrium conditions can be reduced to the following system of two equations in terms of total output y and the scope n:

$$\frac{v_y y}{F + v(y, n)} + \frac{v_n n}{F + v(y, n)} = 1 - R_U$$
$$\frac{yv_y}{nv_n} = \frac{1 - (r_u + R_U \varepsilon_u)}{r_u - R_U (1 - \varepsilon_u)}$$

Once y and n are found, the equilibrium values of price p and the mass of firms N are uniquely determined from free entry and labour balance.

A problem with comparative statics w.r.t. the market size *L*: an increase in *L* now shifts **both curves**.

ロト (得) (ヨ) (ヨ)

No brand effects

• If $U(X) \equiv X$, which means no inter-brand differentiation (Kokovin, Ushchev, Zhelobodko, 2012), then utility function becomes additively separable across varieties:

$$\mathscr{U} = \int_{0}^{N} \int_{0}^{n_j} u(x_{ij}) \, di \, dj$$

- In this case:
 - no cannibalization effect
 - full characterization of comparative statics w.r.t. the market size L

프 🖌 🖌 프 🕨

No intra-brand differentiation

If u(x) ≡ x, which means that varieties supplied by the same firm are perfect substitutes, then

$$\mathscr{U}\equiv\int_{0}^{N}U(X_{j})\,dj,$$

where $X_j \equiv \int_0^{n_j} x_{ij} di$ is total consumption of firm *j*'s products

- Thus, firms are virtually no longer multi-product!
- However, are there useful interpretations for this case?

Interpretation 1: investments in productivity

Assume that variable costs are of the form

$$v(y, n) = c(n)y + \phi n,$$

where c'(n) < 0.

Then the model is **formally equivalent** to the one proposed in (Bykadorov, Kokovin, Zhelobodko, 2012)

How to use it?

If *u* is almost linear, then comparative statics w.r.t. *L* should be **almost the same** as when $u(x) \equiv x$. However, due to the formal equivalence of two models, **we know** comparative statics w.r.t. the market size *L* for the limiting case.

Interpretation 2: multi-plant firms

Assume now that variable costs are of the form

$$V(\mathbf{q},n) \equiv \int_{0}^{n} v(q_{i}) di + \phi n$$

This case can be treated as the case of **multi-plant** firms, where:

- *n* is the number of plants
- *v* are variable production costs of a separate plant
- ϕ is the cost of building a new plant

Multi-plant producer's problem

• Symmetrized variable costs are

$$v(y,n) = nv\left(\frac{y}{n}\right) + \phi n$$

• Then the producer's problem is:

$$\max_{n,y} \pi(n,y) \equiv y \frac{U'(y/L)}{\lambda} - nv \left(\frac{y}{n}\right) - \phi n - F$$

Note: total revenue does not depend on n, ⇒the optimal number of plants n*(y) under a given output y is exactly the one solving

$$\min_{n} \left[n \, v \left(\frac{y}{n} \right) + \phi \, n \right]$$

Optimal plant size

Proposition 2. The optimal plant size $q^*(y) \equiv y/n^*(y)$ is independent on y.

Proof. The FOC for the VC minimization sub-problem is:

$$\phi = q \nu'(q) - \nu(q)$$

Thus, q^* is a (unique) solution of an equation which does not contain *y*. QED

Corollary. The optimal number of plants is given by

$$n^*(y) = \frac{1}{q^*}y$$

< ロ > < 同 > < 回 > < 回 > .

-

Producer's second step problem

After $n^*(y)$ is chosen optimally, the producer seeks to

$$\max_{y} \pi^{*}(y) = y \frac{U'(y/L)}{\lambda} - (F + cy)$$

where $\pi^*(y)$ stands for the profit already optimized w.r.t. *n*, and where $c \equiv [v(q^*) + \phi]/q^*$.

Thus, the model is **formally equivalent** to the one in (ZKPT, 2012), for which we know comparative statics.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

-

Applications

- Offshoring?
- Export vs FDI dilemma?
- Any other suggestions?

문에 비분에

< A >

Thank you for your attention!

프 🖌 🛪 프 🛌

< 1 →