Productivity As If Space Mattered: An Application to Factor Markets Across China

Wenya Cheng, John Morrow and Tong Tacharoen

Christmas Day, 2012

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Introd	uction	
0000		

Literature Model

Method 0000 Data

Empirical Results

ts Conclusion

References

Various 000000

Father's Introduction

- Thank you for welcoming us to HSE and St. Petersburg!
- Extremely globalized series of talks this week:
 - John (US, lives in London)
 - Swati (India, lives in London)
 - Jim (Taiwan, lives in Japan)
- ...and who is a better icon for traveling the whole world than Santa?
- (Sorry if Father Frost doesn't travel much, but then he has Snegurochka.)

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
●000	00	000000	0000	0000	00000000000	00		000000

Introduction Part 1

- Large and persistent differences in productivity prevail across firms and countries. [Syverson, 2011]
 - These differences remain largely a 'measure of our ignorance.'

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Important for firm survival, wages, exports...

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
●000	00	000000	0000	0000	00000000000	00		000000

Introduction Part 1

- Large and persistent differences in productivity prevail across firms and countries. [Syverson, 2011]
 - These differences remain largely a 'measure of our ignorance.'
 - Important for firm survival, wages, exports...
- One dimension of firm heterogeneity is often overlooked: different production conditions
 - Differences between factor markets, especially for labor, are stark.
 - E.g. economies undergoing urbanization, or policies which hamper relocation. [Lewis, 1954]
 - Even US labor market, considered relatively fluid, exhibits high migration costs. [Kennan and Walker, 2011].
 - Institutional mobility constraints (E.g. *hukou* system in China), exacerbate these differences.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
●000	00	000000	0000	0000	0000000000	00		000000

Introduction Part 1

- Large and persistent differences in productivity prevail across firms and countries. [Syverson, 2011]
 - These differences remain largely a 'measure of our ignorance.'
 - Important for firm survival, wages, exports...
- One dimension of firm heterogeneity is often overlooked: different production conditions
 - Differences between factor markets, especially for labor, are stark.
 - E.g. economies undergoing urbanization, or policies which hamper relocation. [Lewis, 1954]
 - Even US labor market, considered relatively fluid, exhibits high migration costs. [Kennan and Walker, 2011].
 - Institutional mobility constraints (E.g. *hukou* system in China), exacerbate these differences.
- To pursue this: model and structurally estimate the role of distinct regional labor markets in firm input use, location and productivity.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Introdu	ction P	t 2						

- Do supply characteristics of regional input markets help explain such robust productivity dispersion across firms?
 - Prices and quality of inputs available vary considerably over space.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Modeling firm adaptation to different factor markets provides testable predictions about how and where firms produce.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Introdu	ction P	t 2						

- Do supply characteristics of regional input markets help explain such robust productivity dispersion across firms?
 - Prices and quality of inputs available vary considerably over space.
 - Modeling firm adaptation to different factor markets provides testable predictions about how and where firms produce.
- Local labor markets: distribution of wages and available types:
 - Skill mix is an important determinant of productivity.
 - "What you can make depends on who you work with."
 - This in turn depends on firm technology and labor supply.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Introdu	ction P	t 2						

- Do supply characteristics of regional input markets help explain such robust productivity dispersion across firms?
 - Prices and quality of inputs available vary considerably over space.
 - Modeling firm adaptation to different factor markets provides testable predictions about how and where firms produce.
- Local labor markets: distribution of wages and available types:
 - Skill mix is an important determinant of productivity.
 - "What you can make depends on who you work with."
 - This in turn depends on firm technology and labor supply.
- Today:
 - Model hiring choices of firms given local supply conditions.
 - Develop method to identify industry technologies.
 - Estimate firm behavior across regional factor markets in China.

Introduction 00●0	Literature 00	Model 000000	M et ho d 0000	Data 0000	Empirical Results	Conclusion 00	References	Various 000000
Introdu	ction P	t 3						

- Model: firms can substitute between types of labor:
 - Imperfect substitutability between types of workers (Bowles [1970]).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Motivates ID: exploit variation in regional wages, skills and hiring.
- Key parameters: Substitution (θ_T) and match quality (k).

Introduction 00●0	Literature 00	Model 000000	M et hod 0000	Data 0000	Empirical Results	Conclusion 00	References	Various 000000
Introdu	ction P	t 3						

- Model: firms can substitute between types of labor:
 - Imperfect substitutability between types of workers (Bowles [1970]).
 - Motivates ID: exploit variation in regional wages, skills and hiring.
 - Key parameters: Substitution (θ_T) and match quality (k).
- Strategy: characterize the unit cost for labor by region.
 - Depends on local conditions and technology.
 - Induces comparative advantage across regions for each industry.

• Helps explain productivity differences via local factor markets.

Introduction 00●0	Literature 00	Model 000000	M et hod 0000	Data 0000	Empirical Results	Conclusion 00	References	Various 000000
Introdu	ction P	t 3						

- Model: firms can substitute between types of labor:
 - Imperfect substitutability between types of workers (Bowles [1970]).
 - Motivates ID: exploit variation in regional wages, skills and hiring.
 - Key parameters: Substitution (θ_T) and match quality (k).
- Strategy: characterize the unit cost for labor by region.
 - Depends on local conditions and technology.
 - Induces comparative advantage across regions for each industry.
 - Helps explain productivity differences via local factor markets.
- The methodology is simple and relies on a two stage OLS procedure.
 - 1st stage OLS: local demand using firm employment and region data.
 - 2^{nd} stage: incorporate regional costs into production estimation.
 - Illustrate w/ simulation + Chinese Manufacturing/Census data.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Summa	ary of R	esults						

- GE model describing:
 - Firm hiring in terms of local distribution of worker types and wages.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Consequent substition into other (non-labor) inputs.
- Regional PPFs and entry.
- Regional concentration of firms.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Cumm	where a f) oculto						

Summary of Results

- GE model describing:
 - Firm hiring in terms of local distribution of worker types and wages.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Consequent substition into other (non-labor) inputs.
- Regional PPFs and entry.
- Regional concentration of firms.
- Structural Estimation of above which is easy to implement and combines distinct data sources which are often available.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Summa	ary of R	lesults						

- GE model describing:
 - Firm hiring in terms of local distribution of worker types and wages.
 - Consequent substition into other (non-labor) inputs.
 - Regional PPFs and entry.
 - Regional concentration of firms.
- Structural Estimation of above which is easy to implement and combines distinct data sources which are often available.
- Findings: Quantify supply conditions over 300 Chinese prefectures.
- Regional variation explains 30-80% of interquartile labor costs and 3-17% of interquartile productivity diffs.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Summa	ary of R	esults						

- GE model describing:
 - Firm hiring in terms of local distribution of worker types and wages.
 - Consequent substition into other (non-labor) inputs.
 - Regional PPFs and entry.
 - Regional concentration of firms.
- Structural Estimation of above which is easy to implement and combines distinct data sources which are often available.
- Findings: Quantify supply conditions over 300 Chinese prefectures.
- Regional variation explains 30-80% of interquartile labor costs and 3-17% of interquartile productivity diffs.
- Low labor cost regions attract more industry activity per capita.
- Performance characteristics (survival, growth) more dependent on productivity which accounts for regional effects.

Introduction	
0000	

Literature Model

/lodel Method

d Data

Empirical Results

Conclusion

References

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Various 000000

Outline

- 1 Introduction
 - Motivation and Overview

2 Literature

Skill Mix and Productivity China Studies

3 Model

Firm Hiring

Turde effe Deel

Trade-offs Regional Factor Markets Present

Unit Costs

4 Method

Estimating Equations Viability of Simplified Estimator

5 Data

Data and Regional Variation

6 Empirical Results

First Stage & Unit Costs

Second Stage Production Estimation

Conclusion

Discussion

8 Various

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	•0	000000	0000	0000	0000000000	00		000000
	10 C 10 C 10 C 10 C							

Related Literature

• Workers skills and productivity (Abowd, Kramarz and Margolis (1999, 2005), Fox and Smeets [2011]).

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References
0000	•0	000000	0000	0000	00000000000	00	

Related Literature

- Workers skills and productivity (Abowd, Kramarz and Margolis (1999, 2005), Fox and Smeets [2011]).
- Industries perform optimally under different degrees of skill diversity.
 - Grossman and Maggi [2000]: theoretical model. Differences in skill dispersion across countries determine comparative advantage.

Various

(ロ) (型) (E) (E) (E) (O)

• Morrow [2010]: multi-sector w/ general distributions. Skill diversity explains productivity and export differences in dev countries.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion
0000	•0	000000	0000	0000	0000000000	00

References

Various 000000

Related Literature

- Workers skills and productivity (Abowd, Kramarz and Margolis (1999, 2005), Fox and Smeets [2011]).
- Industries perform optimally under different degrees of skill diversity.
 - Grossman and Maggi [2000]: theoretical model. Differences in skill dispersion across countries determine comparative advantage.
 - Morrow [2010]: multi-sector w/ general distributions. Skill diversity explains productivity and export differences in dev countries.
- Linkages and Economic Geography: {Albert O Hirschman} [1969], Overman and Puga [2010] (more?)

Intro	duction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion
0000	C	•0	000000	0000	0000	0000000000	00

Related Literature

- Workers skills and productivity (Abowd, Kramarz and Margolis (1999, 2005), Fox and Smeets [2011]).
- Industries perform optimally under different degrees of skill diversity.
 - Grossman and Maggi [2000]: theoretical model. Differences in skill dispersion across countries determine comparative advantage.
 - Morrow [2010]: multi-sector w/ general distributions. Skill diversity explains productivity and export differences in dev countries.
- Linkages and Economic Geography: {Albert O Hirschman} [1969], Overman and Puga [2010] (more?)
- Empirical work consistent with theory.
 - Iranzo et al. [2008]: Italian E-E matched data. An increase in firm-level skill dispersion is associated with higher TFP.
 - Parrotta et al. [2011]: Danish E-E matched data. Employee education diversity -> productivity (industry and ownership FEs).
 - Bombardini et al. [2011]: Literacy across 29 countries. Dispersed skill distribution -> specialize in low skill complementarity industries.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Relation	n to Wo	ork on	China	а				

- Fits within growing literature on Chinese productivity.
- Ma et al. [2011] exporting positively correlated with TFP, exporting ex post increases TFP.
- Brandt et al. [2009] new entry accounts for two thirds of TFP growth. This dominates factor accumulation.
- Hsieh and Klenow [2009] India and China have lower productivity relative to the US due to resource misallocation.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Introduction	Literature	Model	Method	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Relation	n to Wo	ork on	China	3				

- Fits within growing literature on Chinese productivity.
- Ma et al. [2011] exporting positively correlated with TFP, exporting ex post increases TFP.
- Brandt et al. [2009] new entry accounts for two thirds of TFP growth. This dominates factor accumulation.
- Hsieh and Klenow [2009] India and China have lower productivity relative to the US due to resource misallocation.
- Regional differences might help explain stylized Chinese export facts of Manova and Zhang [2012].

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	0.	000000	0000	0000	00000000000	00		000000
Relation	n to Wo	ork on	Chin	а				

- Fits within growing literature on Chinese productivity.
- Ma et al. [2011] exporting positively correlated with TFP, exporting ex post increases TFP.
- Brandt et al. [2009] new entry accounts for two thirds of TFP growth. This dominates factor accumulation.
- Hsieh and Klenow [2009] India and China have lower productivity relative to the US due to resource misallocation.
- Regional differences might help explain stylized Chinese export facts of Manova and Zhang [2012].
- This paper: another dimension of productivity determinants.
- May interact with above mechanisms.

Introduction	
0000	

Literature 00 Model N 000000 0

Method Data

Empirical Results

Conclusion

References

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Various

Outline

- 1 Introduction
 - Motivation and Overview
- 2 Literature
 - Skill Mix and Productivity China Studies

3 Model

- Firm Hiring
- тип
- Trade-offs Regional Factor Markets Present
- Unit Costs
- 4 Method
 - Estimating Equations Viability of Simplified Estimator
- 6 Data
 - Data and Regional Variation
- 6 Empirical Results
 - First Stage & Unit Costs
 - Second Stage Production Estimation
- **7** Conclusion
 - Discussion
- 8 Various

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	0 0000	0000	0000	00000000000	00		000000
Model	Overvie	W						

- Firms: Neoclassical production combining homogeneous factors (materials, capital) and differentiated factors (labor).
 - Neoclassical production: $Y = F_T (M, K, L), T$ indexes tech.
 - L is labor power produced from S skill types (think education bins).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	0 0000	0000	0000	00000000000	00		000000
Model Overview								

- Firms: Neoclassical production combining homogeneous factors (materials, capital) and differentiated factors (labor).
 - Neoclassical production: $Y = F_T (M, K, L), T$ indexes tech.
 - L is labor power produced from S skill types (think education bins).

- In region R, there are region specific
 - Distribution of worker types $a_R = (a_{R,1}, \dots, a_{R,S})$
 - Wages $w_R = (w_{R,1}, ..., w_{R,S}).$

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	00000	0000	0000	00000000000	00		000000

• Each industry has a technology for combining labor into teams:

$$L \equiv \left(H_1^{\theta_T} + H_2^{\theta_T} + \ldots + H_S^{\theta_T}\right)^{1/\theta_T}.$$

Model

000000

M et ho d

Literature

Introduction

• Each industry has a technology for combining labor into teams:

Data

$$L \equiv \left(H_1^{\theta \tau} + H_2^{\theta \tau} + \ldots + H_S^{\theta \tau}\right)^{1/\theta \tau}$$

Empirical Results

Conclusion

References

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Various

- To hire workers, a firm pays a fixed search cost f to draw a distribution of worker types $a_R = (a_{R,1}, \dots, a_{R,S})$.
 - Worker has firm specific match quality $h \sim \Psi(h) \equiv 1 h^{-k}$ observed during search.

Mode

000000

M et ho d

Literature

Introduction

• Each industry has a technology for combining labor into teams:

Data

$$L \equiv \left(H_1^{\theta \tau} + H_2^{\theta \tau} + \ldots + H_S^{\theta \tau}\right)^{1/\theta \tau}$$

Empirical Results

Conclusion

References

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Various

- To hire workers, a firm pays a fixed search cost f to draw a distribution of worker types $a_R = (a_{R,1}, \dots, a_{R,S})$.
 - Worker has firm specific match quality $h \sim \Psi(h) \equiv 1 h^{-k}$ observed during search.
 - Firm chooses minimum thresholds $\underline{h} = (\underline{h}_1, \dots, \underline{h}_S)$ to keep.
 - Firm repeats this process N times to achieve desired workforce.

Mode

00000

M et ho d

Literature

Introduction

• Each industry has a technology for combining labor into teams:

Data

$$L \equiv \left(H_1^{\theta \tau} + H_2^{\theta \tau} + \ldots + H_S^{\theta \tau}\right)^{1/\theta \tau}$$

Empirical Results

Conclusion

References

Various

- To hire workers, a firm pays a fixed search cost f to draw a distribution of worker types $a_R = (a_{R,1}, \dots, a_{R,S})$.
 - Worker has firm specific match quality $h \sim \Psi(h) \equiv 1 h^{-k}$ observed during search.
 - Firm chooses minimum thresholds $\underline{h} = (\underline{h}_1, \dots, \underline{h}_S)$ to keep.
 - Firm repeats this process N times to achieve desired workforce.
- Type specific human capital given by

$$H_i = N \cdot a_{R,i} \underline{m}_{T,i} \int_{\underline{h}_i}^{\infty} h d\Psi.$$

Where Tech T implies human capital $\underline{m}_T = (\underline{m}_{T,1}, \dots, \underline{m}_{T,S})$.

Introduction Literature

Model M 00€000 04

Method Data

Empirical Results

Conclusion

References

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Various 000000

Trade-offs Between Workers: Role of Skill Mix

- Think about trading offs between types: $L = \left(\sum H_i^{ heta au} \right)^{1/ heta au}$.
 - $heta_{\mathcal{T}} > 1$: More dependent on singular sources of HK. (Submodular)
 - $heta_{\mathcal{T}} < 1$: Ideal workforce is a mix of all types. (Supermodular)

Trade-offs Between Workers: Role of Skill Mix

M et ho d

Introduction

Literature

Model

00000

• Think about trading offs between types: $L = \left(\sum H_i^{ heta au}\right)^{1/ heta au}$.

Data

• $heta_{\mathcal{T}} > 1$: More dependent on singular sources of HK. (Submodular)

Empirical Results

• $heta_{\mathcal{T}} < 1$: Ideal workforce is a mix of all types. (Supermodular)

Supermodular Production in H Space

Submodular Production in H Space

・ロト ・ 日本 ・ 日本 ・ 日本

э

Conclusion

References

Various

Trade-offs Between Workers: Role of Skill Mix

M et ho d

Introduction

Literature

Model

000000

• Think about trading offs between types: $L = \left(\sum H_i^{ heta au}\right)^{1/ heta au}$.

Data

• $heta_{\mathcal{T}} > 1$: More dependent on singular sources of HK. (Submodular)

Empirical Results

Conclusion

References

Various

• $heta_{\mathcal{T}} < 1$: Ideal workforce is a mix of all types. (Supermodular)

Supermodular Production in H Space Submodular Production in H Space

- Problem for each case in to explain data in isolation:
 - Supermodular: always have skill mix tending towards same frequencies, i.e. (1/4, 1/4, 1/4, 1/4).
 - Submodular: Why not hire all of one type? i.e. (0, 0, 1, 0).

Introduction Literature Model Method Data Empirical Results Conclusion References Various

- Trade-offs, Skill Mix and Search
 - Solution: change the frame of reference for isoquants...
 - With search, always'a few good matches', so all types are hired.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Proposition. If $\beta^T \equiv \theta^T + k - k \cdot \theta^T > 0$ then it is optimal for a firm to hire all types of workers.

- Interpretation: $E[h] = k / (k-1) > \theta^T$. Tail thick enough.
- Captures both labor technology and availability of workers.

Introduction Literature Model Method Data Empirical Results Conclusion References Various

- Trade-offs, Skill Mix and Search
 - Solution: change the frame of reference for isoquants...
 - With search, always'a few good matches', so all types are hired.

Proposition. If $\beta^T \equiv \theta^T + k - k \cdot \theta^T > 0$ then it is optimal for a firm to hire all types of workers.

- Interpretation: $E[h] = k / (k 1) > \theta^T$. Tail thick enough.
- Captures both labor technology and availability of workers.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• Trade-offs between minimum thresholds $\underline{h} = (\underline{h}_1, \dots, \underline{h}_S)$

Introduction 0000	Literature 00	Model ○○○○●○	Method 0000	Data 0000	Empirical Results	Conclusion 00	References	Various 000000
Unit Costs By Region								

- Solve for unit cost of making L = 1 based on regional market composed of:
 - Human capital $\underline{m}^T = (\underline{m}_1^T, \dots, \underline{m}_S^T)$.
 - Wages $w_R = (w_{R,1}, \dots, w_{R,S})$.
 - Distribution of worker types $a_R = (a_{R,1}, \dots, a_{R,S})$.
| Introduction
0000 | Literature
00 | Model
○○○○●○ | Method
0000 | Data
0000 | Empirical Results | Conclusion
00 | References | Various
000000 |
|----------------------|------------------|-----------------|----------------|--------------|-------------------|------------------|------------|-------------------|
| Unit Co | osts By | Regic | n | | | | | |

- Solve for unit cost of making L = 1 based on regional market composed of:
 - Human capital $\underline{m}^T = (\underline{m}_1^T, \dots, \underline{m}_S^T)$.
 - Wages $w_R = (w_{R,1}, ..., w_{R,S}).$
 - Distribution of worker types $a_R = (a_{R,1}, \dots, a_{R,S})$.
- Then unit costs by region are

$$c_{R}^{T} = \left[\sum_{i} \left[a_{R,i}\left(\underline{m}_{i}^{T}\right)^{k} w_{R,i}^{1-k} / f\left(k-1\right)\right]^{\theta^{T}/\beta^{T}}\right]^{\left(\beta^{T}/\theta^{T}\right)/(1-k)}$$

うして ふゆう ふほう ふほう うらつ

- c_R^T : cost of one unit of labor L.
- Note the Pareto k, the technology θ^T and regional a_R and w_R .

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	Reterences	Various
0000	00	000000	0000	0000	00000000000	00		000000
Closing	The M	lodel						

• Total quantities produced are

$$F_{j}^{T}(M, K, L) \equiv \eta_{j}^{-1} \cdot \left(M_{R}^{T}\right)^{\alpha_{M}^{T}} \left(K_{R}^{T}\right)^{\alpha_{K}^{T}} \left(L_{R}^{T}\right)^{\alpha_{L}^{T}}$$

◆□ > < 個 > < E > < E > E 9 < 0</p>

• Here η_i is a Hicks neutral cost shifter which varies across firms.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Closing	The M	lodel						

• Total quantities produced are

$$F_{j}^{T}(M, K, L) \equiv \eta_{j}^{-1} \cdot \left(M_{R}^{T}\right)^{\alpha_{M}^{T}} \left(K_{R}^{T}\right)^{\alpha_{K}^{T}} \left(L_{R}^{T}\right)^{\alpha_{L}^{T}}.$$

- Here η_i is a Hicks neutral cost shifter which varies across firms.
- GE closed with monopolistic competition and free entry into regions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Existence of equilibrium: see paper.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Closing	The M	lodel						

• Total quantities produced are

$$F_{j}^{T}\left(M,K,L\right) \equiv \eta_{j}^{-1} \cdot \left(M_{R}^{T}\right)^{\alpha_{M}^{T}} \left(K_{R}^{T}\right)^{\alpha_{K}^{T}} \left(L_{R}^{T}\right)^{\alpha_{L}^{T}}.$$

- Here η_i is a Hicks neutral cost shifter which varies across firms.
- GE closed with monopolistic competition and free entry into regions.
- Existence of equilibrium: see paper.
- Firm location satisfies

Spatial Zero Profit Condition :
$$E\left[\pi_{Rj}^{T}\right] = F_{e}, \quad \forall R, T.$$

 Proposition. Within an industry, regions with lower labor costs have more firms per capita. Introduction

Literature M

Model Me 000000 00

Method Data

Empirical Results

Conclusion

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

References

Various 000000

Outline

- 1 Introduction
 - Motivation and Overview
- 2 Literature
 - Skill Mix and Productivity China Studies
- 3 Model
 - Firm Hiring
 - тип
 - Trade-offs Regional Factor Markets Present
 - Unit Costs

4 Method

- Estimating Equations Viability of Simplified Estimator
- 5 Data
 - Data and Regional Variation
- 6 Empirical Results
 - First Stage & Unit Costs
 - Second Stage Production Estimation
- **7** Conclusion
 - Discussion
- 8 Various

Introduction Literature Model Method Data Empirical Results Conclusion References Various

Estimating Equations: First Stage

• First stage: LHS from firm data, RHS from Census, etc.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Estimating Equations: First Stage

• First stage: LHS from firm data, RHS from Census, etc.

(ロ) (型) (E) (E) (E) (O)

• Firm idiosyncratic factors may influence usefulness of types:

Introduction Literature Model Method Data Empirical Results Conclusion References Various

Estimating Equations: First Stage

• First stage: LHS from firm data, RHS from Census, etc.

• Firm idiosyncratic factors may influence usefulness of types:

• Comparative statics & (local) isoquants:

Introduction Literature Model Method Data E 0000 00 00000 0●00 0000 0

Empirical Results

Conclusion

References

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Various 000000

Estimating Equations: Second Stage

• Estimates:
$$\widehat{\theta^T}$$
, \widehat{k} , $\left\{ \underline{\widehat{m_i^T}} / \underline{\widehat{m}_S^T} \right\}$ and $\left\{ \widehat{\gamma_i^T} \right\}$.

- Regional data: $\{a_R\}$, $\{w_R\}$.
- Unit cost function (|R| is # of regions):

$$\Delta \ln c_{Rj}^{T} \equiv E \left[\ln c_{Rj}^{T} | R, T, \text{Controls}_{j} \right] - E \left[\ln c_{Rj}^{T} | T \right]$$

Introduction Literature Model Method Data Empirical Results 0000 00 000000 **0**€00 0000 0000000000

Conclusion

References

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Various 000000

Estimating Equations: Second Stage

• Estimates:
$$\widehat{\theta^{T}}$$
, \widehat{k} , $\left\{ \underline{\widehat{m_{i}^{T}}}, \underline{\widehat{m}_{S}^{T}} \right\}$ and $\left\{ \widehat{\gamma_{i}^{T}} \right\}$.

- Regional data: $\{a_R\}$, $\{w_R\}$.
- Unit cost function (|R| is # of regions):

$$\Delta \ln c_{Rj}^{T} \equiv E \left[\ln c_{Rj}^{T} | R, T, \text{Controls}_{j} \right] - E \left[\ln c_{Rj}^{T} | T \right]$$

• Second Stage: All from firm data but regional cost $\Delta \ln c_{Ri}^T$.

$$\Delta \ln Y_j = \frac{\alpha_M}{1 - \alpha_L} \cdot \Delta \ln M_j + \frac{\alpha_K}{1 - \alpha_L} \cdot \Delta \ln K_j - \frac{\alpha_L}{1 - \alpha_L} \cdot \Delta \widehat{\ln c_{Rj}^T}$$

• Simulation shows this method + bootstrap pretty good

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Simulati	ion and	Estir	nation					

Variable	Description	Value
θτ	Technological parameter.	2
k	Pareto shape parameter.	1.5
{ <u>m</u> ;}	Human capital shifters.	{4, 8, 12, 16, 20}
$\{w_{\boldsymbol{R},\boldsymbol{i}}\}$	Regional wages by education.	$\sim LogNormal\ \mu = (12, 24, 36, 48, 60),\ \sigma = 1/3.$
$\{a_{R,i}\}$	Regional educational freq.	\sim LogNormal $\mu = (.4, .3, .15, .1, .05), \sigma = 1/3.$
		Scaled to sum to one.
К, М	Firm capital and materials.	$\sim {\sf LogNormal}$ with $\mu =$ 1, $\sigma =$ 1.
L	Amount of <i>L</i> employed by firm.	Profit maximizing given K, M and region.
α _Μ , α _κ , α _L	Cobb-Douglas Prod Params.	$\alpha_{M} = 1/6, \ \alpha_{K} = 1/3, \ \alpha_{L} = 1/2.$
Control	Explanatory output variable.	$\sim {\sf LogNormal}$ with $\mu =$ 0, $\sigma =$ 1.
Coeff	Coeff on Control Variable	Control Coeff= π .
$\{\omega_j\}$	Firm idiosyncratic wage costs.	$\sim {\sf LogNormal}$ with $\mu =$ 0, $\sigma =$.1.
Error	Idiosyncratic Production Shocks	$\sim {\sf LogNormal}$ with $\mu =$ 0, $\sigma =$ 1/2.

Simulation conducted for 200 regions with 20 firms per region.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	0000000000	00		000000

How does it perform?

Parameter	Estimate	Std Err	Predicted
$\alpha_M / (1 - \alpha_L)$.3298	.0079	.3333
$\alpha_K / (1 - \alpha_L)$.6680	.0080	.6667
$-\alpha_L/(1-\alpha_L)$	9303	.0748	-1
Control Coeff	3.148	.0079	3.141
R-squared:	.9767		

Introduction

Literature Mo

Model Method
000000 0000

d Data

Empirical Results

Conclusion

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

References

Various

Outline

- 1 Introduction
 - Motivation and Overview
- 2 Literature
 - Skill Mix and Productivity China Studies
- 3 Model
 - Firm Hiring
 - Tuesda affa Day
 - Trade-offs Regional Factor Markets Present
 - Unit Costs
- 4 Method
 - Estimating Equations Viability of Simplified Estimator
- 5 Data
 - Data and Regional Variation
- 6 Empirical Results
 - First Stage & Unit Costs
 - Second Stage Production Estimation
- **7** Conclusion
 - Discussion
- 8 Various

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	•000	00000000000	00		000000
Data								

- Population census provides us with regional characteristics such as wages and the distribution of workers across skill types.
- Chinese manufacturing survey reports firm-level characteristics and the distribution of workers across education levels for each firm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• China City Statistical Indicators (GIS Maps).

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	•000	00000000000	00		000000
Data								

- Population census provides us with regional characteristics such as wages and the distribution of workers across skill types.
- Chinese manufacturing survey reports firm-level characteristics and the distribution of workers across education levels for each firm.
- China City Statistical Indicators (GIS Maps).
- Identification is through regional variation:
 - Reveals how firm demand for skills varies with local conditions.
 - Merge manufacturing survey to estimate firm level productivity.

うして ふゆう ふほう ふほう うらつ

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	●000	00000000000	00		000000
Data								

- Population census provides us with regional characteristics such as wages and the distribution of workers across skill types.
- Chinese manufacturing survey reports firm-level characteristics and the distribution of workers across education levels for each firm.
- China City Statistical Indicators (GIS Maps).
- Identification is through regional variation:
 - Reveals how firm demand for skills varies with local conditions.
 - Merge manufacturing survey to estimate firm level productivity.

- 33 Provinces, excluding:
 - 5 Autonomous
 - 1 Non-Han
- 345 Prefectures, excluding:
 - 53 Autonomous

Introduction

Literature Model

Method Data 0000 0●00 Empirical Results

Conclusion

References

Various 000000

Demographics in China InfoGraphic

• Existing distribution of workers: no stance.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Regiona	I Varia	tion ii	n Inco	me				

• Regional wage dispersion of workers: $w_R = (w_{R,1}, \dots, w_{R,S})$.

Figure: Average Monthly Income of Employees (2005)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

• Regional distributions of worker types $a_R = (a_{R,1}, \dots, a_{R,S})$.

Figure: Low and High Educational Attainment Across China (2005)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction

Literature Model

odel Method

d Data

Empirical Results

Conclusion

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

References \

Various 000000

Outline

- 1 Introduction
 - Motivation and Overview
- 2 Literature
 - Skill Mix and Productivity China Studies
- 3 Model
 - Firm Hiring
 - Trade-offs Regional Factor Markets Present
 - Unit Costs
- 4 Method
 - Estimating Equations Viability of Simplified Estimator
- 5 Data
 - Data and Regional Variation
- 6 Empirical Results
 - First Stage & Unit Costs
- Conclusion
 - Discussion
- **8** Various

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	● 00000 00000	00		000000
First St	age (G	ieneral	Mac	hiner	y)			

Primary Variables	In (% Hired)	Firm Controls	
$\ln(w_{R,i})$	-2.687***	<u>m</u> ₁ * Urban Dummy -	1.384***
$\ln(a_{R,i})$	1.794***	<u>m</u> 2 * Urban Dummy -	0.980***
\underline{m}_1 (\leq Junior HS:Female)	-10.170***	<u>m</u> 3 * Urban Dummy	0.427***
\underline{m}_2 (\leq Junior HS:Male)	-6.171***	<u>m</u> ₄ * Urban Dummy	2.336***
<u>m</u> 3 (Senior High School)	-3.180***	<u>m</u> 1*% Foreign Equity -:	2.448***
		<u>m</u> 2*% Foreign Equity -	1.864***
			0.311***
Regional Controls		<u>m</u> ₄ *% Foreign Equity	3.847***
<u>m</u> 1*% Non-Ag Hukou	-5.957***	$\underline{m}_1 * \ln (\text{Firm Age})$	0.934***
<u>m</u> ₂∗% Non-Ag Hukou	-3.072***	$\underline{m}_2 * \ln (\text{Firm Age})$	0.403***
<u>m</u> ₃∗% Non-Ag Hukou	-3.218***	$\underline{m}_3 * \ln$ (Firm Age)	0.143***
<u>m</u> ₄∗% Non-Ag Hukou	-7.026***	$\underline{m}_4 * \ln$ (Firm Age)	0.351***
Observations: 62,908. R ²	: 0.139	Includes Regional Fixed E	ffects
	61 19	***	-

Standard errors in parentheses. Significance: *** p < .01, ** p < .05, * p < .1.

First Stage Primitive Estimates

Industry	k	Std Err	θ^{T}	Std Err	β^{T}	Std Err
Beverages						
Electrical Equipment						
Food Manufacturing						
General Machinery	2.50	(0.14)	1.22	(0.03)	0.68	(0.03)
Iron and Steel						
Leather & Fur						
Med & Prec Equip						
Metal Products						
Non-ferrous Metal						
Non-metallic Products						
Paper						
Plastic						
Printing						
Radio TV PC & Comm						
Rubber						
Specific Machinery						
Textile						
Transport Equipment						
Wood						

First Stage Primitive Estimates

Industry	k	Std Err	θ^{T}	Std Err	β^{T}	Std Err
Beverages	2.12	(0.38)	1.24	(0.08)	0.75	(0.08)
Electrical Equipment	2.60	(0.15)	1.22	(0.02)	0.65	(0.03)
Food Manufacturing	1.59	(0.36)	1.28	(0.13)	0.86	(0.10)
General Machinery	2.50	(0.14)	1.22	(0.03)	0.68	(0.03)
Iron and Steel	3.21	(0.56)	1.00	(0.06)	1.02	(0.15)
Leather & Fur	2.15	(0.70)	0.76	(0.14)	1.24	(0.24)
Med & Prec Equip	2.34	(0.18)	1.43	(0.05)	0.43	(0.03)
Metal Products	3.20	(0.24)	1.10	(0.03)	0.77	(0.05)
Non-ferrous Metal	2.89	(0.38)	1.15	(0.05)	0.72	(0.08)
Non-metallic Products	2.02	(0.16)	1.25	(0.04)	0.75	(0.03)
Paper	6.25	(3.82)	0.73	(0.11)	2.48	(2.08)
Plastic	3.51	(0.29)	1.08	(0.03)	0.81	(0.06)
Printing	3.93	(0.60)	1.04	(0.04)	0.89	(0.12)
Radio TV PC & Comm	2.21	(0.14)	1.41	(0.04)	0.51	(0.03)
Rubber	1.63	(0.61)	1.15	(0.19)	0.93	(0.17)
Specific Machinery	1.63	(0.18)	1.43	(0.07)	0.74	(0.05)
Textile	3.73	(0.36)	0.95	(0.03)	1.15	(0.09)
Transport Equipment	1.26	(0.24)	1.38	(0.13)	0.92	(0.09)
Wood	1.52	(0.22)	1.62	(0.17)	0.71	(0.09)

500

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Unit La	bor Co	sts Ac	cross	China				

- Substantial regional heterogeniety by region and industry.
- Figure: Unit cost/Min unit cost for General Purpose Machinery.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
Unit La	hor Co	sts Ad	ross	China				

- Substantial regional heterogeniety by region and industry.
- Figure: Unit cost/Min unit cost for General Purpose Machinery.

Dependent Variable: In (Value Added per Capita)								
Industry	$\ln \left(c_{R}^{T} \right)$	SE	Port Dist	SE	Const	SE	R^2	
Beverages		•					÷	
Electrical Equipment	·	•		•	•		•	
Food Manufacturing							•	
General Machinery	-0.705°	(.40)	-1.314ª	(.34)	19.68ª	(4.9)	.11	
Iron and Steel							•	
Leather & Fur							•	
Med & Prec Equip							•	
Metal Products							•	
Non-ferrous Metal	·	•		·	•		•	
Non-metallic Products							•	
Paper							•	
Plastic							•	
Printing							•	
Radio TV PC & Comm							•	
Rubber								
Specific Machinery								
Textile								
Transport Equipment							•	
Wood								

Note: a, b and c denote 1, 5 and 10% significance level respectively

æ

Depe	Dependent Variable: In (Value Added per Capita)									
Industry	$\ln \left(c_R^T \right)$	SE	Port Dist	SE	Const	SE	R^2			
Beverages	-0.696 <i>b</i>	(.27)	-0.122	(.20)	18.96ª	(3.4)	.03			
Electrical Equipment	-0.057	(.40)	-1.567ª	(.26)	11.98 ^b	(4.8)	.22			
Food Manufacturing	-0.553 ^b	(.23)	-0.397 ^b	(.18)	15.49 <i>ª</i>	(2.2)	.04			
General Machinery	-0.705°	(.40)	-1.314 ^a	(.34)	19.68 <i>ª</i>	(4.9)	.11			
Iron and Steel	-1.245 ^b	(.57)	-0.576ª	(.19)	16.30 <i>ª</i>	(2.2)	.06			
Leather & Fur	-1.255ª	(.25)	-1.028 ^b	(.42)	25.81ª	(3.1)	.27			
Med & Prec Equip	-0.267	(.30)	-1.135 ^b	(.43)	13.13ª	(3.4)	.07			
Metal Products	-0.236	(.46)	-1.239ª	(.26)	13.24ª	(4.9)	.14			
Non-ferrous Metal	-1.977ª	(.54)	-0.468 ^c	(.28)	27.29ª	(4.6)	.10			
Non-metallic Products	-0.827ª	(.29)	-0.910ª	(.16)	20.89ª	(3.4)	.11			
Paper	-0.911ª	(.20)	-0.320	(.25)	20.04ª	(2.1)	.12			
Plastic	-0.556	(.35)	-1.406ª	(.22)	16.86ª	(4.0)	.22			
Printing	0.103	(.66)	-0.123	(.26)	8.54	(7.1)	.01			
Radio TV PC & Comm	-0.212	(.37)	-0.741 ^b	(.33)	13.92 <i>ª</i>	(4.6)	.04			
Rubber	-0.424°	(.22)	-0.470	(.40)	14.06 <i>ª</i>	(2.1)	.06			
Specific Machinery	-0.316°	(.18)	-0.680ª	(.19)	14.74 ^a	(2.3)	.07			
Textile	-0.934ª	(.27)	-1.168ª	(.15)	19.70 <i>ª</i>	(2.4)	.18			
Transport Equipment	-0.105	(.10)	-1.119ª	(.25)	12.69 <i>ª</i>	(1.3)	.10			
Wood	-2.234ª	(.34)	-1.038ª	(.27)	47.02 <i>ª</i>	(5.6)	.20			

Note: a, b and c denote 1, 5 and 10% significance level respectively.

SQC.

Second Stage Results

Industry	αL	Std Dev	ακ	Std Dev	α _M	Std Dev
Beverages						
Electrical Equipment						
Food Manufacturing						
General Machinery	0.17	(0.02)	0.12	(0.003)	0.60	(0.01)
Iron and Steel						
Leather & Fur						
Med & Prec Equip						
Metal Products						
Non-ferrous Metal						
Non-metallic Products						
Paper						
Plastic						
Printing						
Radio TV PC & Comm						
Rubber						
Specific Machinery						
Textile						
Transport Equipment						
Wood						

ADD ADD ABD ABD B 9900

Second Stage Results

Industry	αL	Std Dev	ακ	Std Dev	α _M	Std Dev
Beverages	0.13	(0.05)	0.10	(0.007)	0.70	(0.04)
Electrical Equipment	0.25	(0.01)	0.14	(0.001)	0.47	(0.00)
Food Manufacturing	0.14	(0.08)	0.09	(0.009)	0.70	(0.06)
General Machinery	0.17	(0.02)	0.12	(0.003)	0.60	(0.01)
Iron and Steel	0.40	(0.06)	0.07	(0.010)	0.48	(0.05)
Leather & Fur	0.10	(0.11)	0.13	(0.017)	0.59	(0.07)
Med & Prec Equip	0.20	(0.01)	0.16	(0.003)	0.43	(0.01)
Metal Products	0.24	(0.01)	0.14	(0.001)	0.46	(0.00)
Non-ferrous Meta	0.40	(0.03)	0.08	(0.005)	0.43	(0.02)
Non-metallic Products	0.20	(0.02)	0.07	(0.002)	0.61	(0.02)
Paper	0.18	(0.36)	0.14	(0.026)	0.53	(0.28)
Plastic	0.27	(0.04)	0.14	(0.008)	0.41	(0.02)
Printing	0.09	(0.06)	0.22	(0.014)	0.55	(0.03)
Radio TV PC & Comm	0.16	(0.01)	0.21	(0.003)	0.43	(0.01)
Rubber	0.06	(0.15)	0.13	(0.021)	0.63	(0.10)
Specific Machinery	0.10	(0.03)	0.16	(0.005)	0.55	(0.02)
Textile	0.12	(0.05)	0.11	(0.007)	0.61	(0.03)
Transport Equipment	0.04	(0.03)	0.15	(0.006)	0.65	(0.02)
Wood	0.22	(0.11)	0.10	(0.017)	0.56	(0.08)

200

	Unit Co	st Ratios	Productiv	ity Ratios
Ind ust ry	75%/25%	90%/10%	75%/25%	90%/10%
Beverages	1.51	2.24		
Electrical Equipment	1.38	1.88		
Food Manufacturing	1.81	3.30		
General Machinery	1.41	1.92		
Iron and Steel	1.34	1.72		
Leather & Fur	1.92	2.69		
Med & Prec Equip	1.80	2.69		
Metal Products	1.33	1.71		
Non-ferrous Metal	1.45	1.89		
Non-metallic Products	1.42	1.96		
Paper	1.66	2.78		
Plastic	1.35	1.72		
Printing	1.37	1.72		
Radio TV PC & Comm	1.44	2.13		
Rubber	2.16	3.97		
Specific Machinery	1.99	3.68		
Textile	1.37	1.89		
Transport Equipment	4.01	13.09		
Wood	1.47	2.16		

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	000000000000000	00		000000
Calculat	ting Pro	oduct	ivity	Differ	ences			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Productivity: Need to account for substition into K and M.
- Requires second stage production parameter estimates.

- Productivity: Need to account for substition into K and M.
- Requires second stage production parameter estimates.
- Firms 1 and 2: Same K, M and wage bill W.
- Unit labor costs of c_{RT}^1 and c_{RT}^2 .
- Effective labor employed: $L^1 = W/c_{RT}^1$ and $L^2 = W/c_{RT}^2$.

$$Y^{1}/Y^{2} = \left(M^{\alpha_{M}^{T}}K^{\alpha_{K}^{T}}L_{1}^{\alpha_{L}^{T}}\right) / \left(M^{\alpha_{M}^{T}}K^{\alpha_{K}^{T}}L_{2}^{\alpha_{L}^{T}}\right) = \left(c_{RT}^{2}/c_{RT}^{1}\right)^{\alpha_{L}^{T}}$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

- Productivity: Need to account for substition into K and M.
- Requires second stage production parameter estimates.
- Firms 1 and 2: Same K, M and wage bill W.
- Unit labor costs of c_{RT}^1 and c_{RT}^2 .
- Effective labor employed: $L^1 = W/c_{RT}^1$ and $L^2 = W/c_{RT}^2$.

$$Y^{1}/Y^{2} = \left(M^{\alpha_{M}^{T}}K^{\alpha_{K}^{T}}L_{1}^{\alpha_{L}^{T}}\right) / \left(M^{\alpha_{M}^{T}}K^{\alpha_{K}^{T}}L_{2}^{\alpha_{L}^{T}}\right) = \left(c_{RT}^{2}/c_{RT}^{1}\right)^{\alpha_{L}^{T}}$$

- General Machinery at 25^{th} and 75^{th} percentile: $c_{RT}^2/c_{RT}^1 = 1.41$
- Share of wages is $\alpha_L^T = 0.17$. $1.06 = 1.41^{0.17}$ as much output.

	Unit Cost Ratios		Productivity Ratios		
Ind ust ry	75%/25%	90%/10%	75%/25%	90%/10%	
Beverages	1.51	2.24	1.06	1.12	
Electrical Equipment	1.38	1.88	1.08	1.17	
Food Manufacturing	1.81	3.30	1.09	1.19	
General Machinery	1.41	1.92	1.06	1.12	
Iron and Steel	1.34	1.72	1.13	1.26	
Leather & Fur	1.92	2.69	1.04	1.05	
Med & Prec Equip	1.80	2.69	1.13	1.22	
Metal Products	1.33	1.71	1.07	1.14	
Non-ferrous Meta	1.45	1.89	1.17	1.30	
Non-metallic Products	1.42	1.96	1.08	1.15	
Paper	1.66	2.78	1.07	1.15	
Plastic	1.35	1.72	1.09	1.16	
Printing	1.37	1.72	1.03	1.05	
Radio TV PC & Comm	1.44	2.13	1.06	1.13	
Rubber	2.16	3.97	1.04	1.07	
Specific Machinery	1.99	3.68	1.08	1.15	
Textile	1.37	1.89	1.04	1.07	
Transport Equipment	4.01	13.09	1.04	1.07	
Wood	1.47	2.16	1.10	1.22	

Introduction	
0000	

Literature Model

odel Method

Data Empirica

Empirical Results

Conclusion

(日) (雪) (日) (日) (日)

References

Various 000000

Outline

- 1 Introduction
 - Motivation and Overview
- 2 Literature
 - Skill Mix and Productivity
- 3 Model
 - Firm Hiring
 - Turde effe Der
 - Trade-offs Regional Factor Markets Present
 - Unit Costs
- 4 Method
 - Estimating Equations Viability of Simplified Estimator
- 5 Data
 - Data and Regional Variation
- 6 Empirical Results
 - First Stage & Unit Costs
 - Second Stage Production Estimation
- Conclusion
 - Discussion
- 8 Various

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	•0		000000
Results	Extrava	aganz	а					

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Production Estimates by Method: Results
- Productivity and Survival:
 Results
- Productivity and Sales Growth: Results
- Productivity and Exports: Results
- Productivity Comparison by Method: Results
| Introduction
0000 | Literature
00 | Model
000000 | Met hod
0000 | Data
0000 | Empirical Results | Conclusion
○● | References | Various
000000 |
|----------------------|------------------|-----------------|------------------------|--------------|-------------------|------------------|------------|-------------------|
| Conclus | sion | | | | | | | |

- Local markets important for input use, productivity and location.
- Developed method to identify skill mix technologies.
 - Model for estimating & interpreting variation in local factor markets.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Hinges on local distribution of worker types and wages.
- More information: Firm + pop census + geographic data.

Introduction 0000	Literature 00	Model 000000	Met hod	Data 0000	Empirical Results	Conclusion ○●	References	Various 000000
Conclus	ion							

- Local markets important for input use, productivity and location.
- Developed method to identify skill mix technologies.
 - Model for estimating & interpreting variation in local factor markets.
 - Hinges on local distribution of worker types and wages.
 - More information: Firm + pop census + geographic data.
- Substantial differences in labor costs and firm behavior across China.
 - Labor cost differences (30-80%) & productivity differences (3-17%).
 - Lower cost regions attract more industry activity per capita.
 - Firm Performance (survival, growth) more dependent on productivity measure which accounts for local factor markets.

Introduction 0000	Literature 00	Model 000000	Met hod	Data 0000	Empirical Results	Conclusion ○●	References	Various 000000
Conclus	ion							

- Local markets important for input use, productivity and location.
- Developed method to identify skill mix technologies.
 - Model for estimating & interpreting variation in local factor markets.
 - Hinges on local distribution of worker types and wages.
 - More information: Firm + pop census + geographic data.
- Substantial differences in labor costs and firm behavior across China.
 - Labor cost differences (30-80%) & productivity differences (3-17%).
 - Lower cost regions attract more industry activity per capita.
 - Firm Performance (survival, growth) more dependent on productivity measure which accounts for local factor markets.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- Further work:
 - Implications for inequality across and within regions/industries.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	0000000000	00		000000

{Albert O Hirschman}. The strategy of economic development. In A.N. Agarwala and S.P. Singh, editors, Accelerating Investment in Developing Economies, pages 3–11. Oxford University Press, 1969.

Matilde Bombardini, Giovanni Gallipoli, and Germán Pupato. Skill dispersion and trade flows. Working Paper Series, 2011. URL http://faculty.arts.ubc.ca/mbombardini/BGP3imay2011.pdf.

S. Bowles. Aggregation of labor inputs in the economics of growth and planning: Experiments with a two-level CES function. The Journal of Political Economy, 78(1):68–81, 1970.

Loren Brandt, Johannes Van Biesebroeck, and Yifan Zhang. Creative accounting or creative destruction? firm-level productivity growth in chinese manufacturing. Technical report, Katholieke Universiteit Leuven, 2009. URL http://ideas.repec.org/p/mer/leuven/urnhd1123466789-253791.html.

Jeremy T. Fox and Valérie Smeets. Does input quality drive measured differences in firm productivity? NBER Working Papers 16853, National Bureau of Economic Research, March 2011. URL http://ideas.repec.org/p/hbr/hbrev/16853.html.

Gene M. Grossman and Giovanni Maggi. Diversity and trade. The American Economic Review, 90(5):1255-1275, 2000. URL http://www.jstor.org/stable/2677850.

C. T. Hsieh and P. J. Klenow. Misallocation and manufacturing TFP in china and india. Quarterly Journal of Economics, 124(4):1403–1448, 2009.

Susana Iranzo, Fabiano Schivardi, and Elisa Tosetti. Skill dispersion and firm productivity: An analysis with employer-employee matched data. Journal of Labor Economics, 26(2):247–285, 04 2008. URL http://ideas.repec.org/a/ucr/labor/2592/08129247-285.html.

J. Kennan and J. R. Walker. The effect of expected income on individual migration decisions. Econometrica, 79 (1):211-251, 2011. URL http://onlinelibrary.wiley.com/doi/10.3982/ECTA4657/abstract.

W.A. Lewis. Economic development with unlimited supplies of labour. The Manchester School, 22(2):139–191, 1954.

Yue Ma, Heiwai Tang, and Yifan Zhang. Factor intensity, product switching, and productivity: Evidence from chinese exporters. Development Working Papers 324, Centro Studi Luca dágliano, University of Milano, December 2011. URL http://ideas.repoc.org/p/cs1/deverp/324.html.

K. Manova and Z. Zhang. Export prices a cross firms and destinations. The Quarterly Journal of Economics, 127 (1):379-436, January 2012. ISSN 0033-5533, 1531-4650. doi: 10.1093/qje/qjr051. URL http://qje.ordrofjournals.org/cgi/doi/10.1093/qje/qjr051.

John Morrow. Is skill disperison a source of productivity and exports in developing countries? Working Paper, January 2010. URL http://johnmorrow.info/projects/diversity/divProdExp.pdf.

H. G. Overman and D. Puga. Labor pooling as a source of agglomeration: An empirical investigation. In {Edward L. Glaeser}, editor, Agglomeration Economics. University of Chicago Press, 2010. URL http://www.nber.org/chapters/c7981.pdf.

э

Pierpaolo Parrotta, Dario Pozzoli, and Mariola Pytlikova. Does labor diversity affect firm productivity? Norface Discussion Paper Series 2011022, Norface Research Programme on Migration, Department of Economics, University College London, December 2011. URL http://does.repec.org/p/nor/ypaper/2011022.html.

Chad Syverson. What determines productivity? Journal of Economic Literature, 49(2):326-365, 2011. URL http://home.uchicago.edu/syverson/productivitysurvey.pdf.

Introduction	
0000	

Literature Model

del Method 0000 0000 Data 0000 Empirical Results

Conclusion

References

(日) (雪) (日) (日) (日)

Various

Outline

- 1 Introduction
 - Motivation and Overview
- 2 Literature
 - Skill Mix and Productivity China Studies
- 3 Model
 - Firm Hiring
 - Turde affe De
 - Trade-offs Regional Factor Markets Present
 - Unit Costs
- 4 Method
 - Estimating Equations Viability of Simplified Estimator
- 6 Data
 - Data and Regional Variation
- 6 Empirical Results
 - First Stage & Unit Costs
 - Second Stage Production Estimation
- Conclusion
 - Discussion
- Various

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		•00000
C I				0.1	I I N	Л		

Second-stage Estimates vs Other Labor Measures

• "Solow Residuals" aka "Productivity" in General Purpose Machinery

イロト イポト イヨト イヨト

- 3

- Note residuals are in logs, absolute levels sizable.
- Regional factor markets imply rank fairly stable.

Second-stage Estimates vs Other Labor Measures

	Unit (Cost Ap	proach	Tota	Employ	/ment
Industry	αL	αĸ	α _M	αL	αĸ	αΜ
Beverages	0.13	0.10	0.70	0.22	0.07	0.73
Electrical Equipment	0.25	0.14	0.47	0.32	0.12	0.51
Food Manufacturing	0.14	0.09	0.70	0.17	0.06	0.75
General Machinery	0.17	0.12	0.60	0.23	0.09	0.64
Iron and Steel	0.40	0.07	0.48	0.29	0.05	0.70
Leather & Fur	0.10	0.13	0.59	0.30	0.09	0.56
Med & Prec Equip	0.20	0.16	0.43	0.36	0.10	0.44
Metal Products	0.24	0.14	0.46	0.30	0.12	0.51
Non-ferrous Metal	0.40	0.08	0.43	0.22	0.08	0.65
Non-metallic Products	0.20	0.07	0.61	0.18	0.06	0.70
Paper	0.18	0.14	0.53	0.31	0.10	0.54
Plastic	0.27	0.14	0.41	0.32	0.13	0.45
Printing	0.09	0.22	0.55	0.34	0.17	0.49
Radio TV PC & Comm	0.16	0.21	0.43	0.40	0.16	0.41
Rubber	0.06	0.13	0.63	0.32	0.06	0.56
Specific Machinery	÷	÷	÷	:	÷	÷
Textile	0.18	0.13	0.55	0.28	0.09	0.58

back

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		000000
1.10		S 1	1.1.1.1.1.1.1		C 1			

	Survival Rate (2005-7)						
Productivity	0.019***						
(Unit Cost method)	(0.003)						
Productivity		0.010***					
(L = Emp oyment)		(0.002)					
Productivity			0.010***				
(L = Wages)			(0.002)				
Prefecture and Industry FE	Yes	Yes	Yes				
Observations	141,409	141,409	141,409				
R-squared	0.023	0.022	0.022				

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Standard errors in parentheses.

Significance: *** p<.01, ** p<.05, * p<.1.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	0000000000	00		000000

Idiosyncratic Productivity and Sales Growth

	Sales Growth Rate (2005-7)					
Productivity	-0.074**					
(Unit Cost method)	(0.030)					
Productivity		-0.052**				
(L = Employment)		(0.021)				
Productivity			-0.054**			
(L = Wages)			(0.022)			
Prefecture and Industry FE	Yes	Yes	Yes			
Observations	119,159	119,159	119,159			
R-squared	0.027	0.027	0.027			

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Standard errors in parentheses.

Significance: *** p<.01, ** p<.05, * p<.1.

Various 0000●0

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Idiosyncratic Productivity and Exports

	Export Dummy (2005)			
Productivity	0.024***			
(Unit Cost method)	(0.007)			
Productivity		0.015***		
(L = Employment)		(0.004)		
Productivity			0.017***	
(L = Wages)			(0.004)	
Prefecture and Industry FE	Yes	Yes	Yes	
Observations	141,409	141,409	141,409	
R-squared	0.202	0.202	0.202	

Standard errors in parentheses.

Significance: *** p<.01, ** p<.05, * p<.1.

Introduction	Literature	Model	M et ho d	Data	Empirical Results	Conclusion	References	Various
0000	00	000000	0000	0000	00000000000	00		00000
Labor I	Mobility	in Cl	nina					

- With exception of very highly educated (<10% of population), hard to argue labor is mobile across prefectures.
- Anecdotal evidence that rural <-> urban migration substantial.
 - These markets plausibly integrated (we will control for this).

うして ふゆう ふほう ふほう うらつ